Effect of nicotine on the proliferation and chondrogenic differentiation of the human Wharton's jelly mesenchymal stem cells.

Biomed Mater Eng

UMR 7365 CNRS-UL, Faculté de Médecine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), 54505 Vandœuvre-lès-Nancy, France.

Published: July 2017

Background: Osteoarthritis (OA) is a chronic joint disease characterized by a progressive and irreversible degeneration of articular cartilage. Among the environmental risk factors of OA, tobacco consumption features prominently, although, there is a great controversy regarding the role of tobacco smoking in OA development. Among the numerous chemicals present in cigarette smoke, nicotine is one of the most physiologically active molecules.

Objective: The aim of the study was (i) to measure the impact of nicotine on the proliferation and chondrogenic differentiation of mesenchymal stem cells from the human Wharton's jelly (hWJ-MSCs) into chondrocytes, (ii) to investigate whether the α7 nicotinic acetylcholine receptors (nAChRs) was expressed in hWJ-MSCs and could play a role in the process. The project benefits from the availability of an umbilical cord bank from which hWJ-MSCs were originated.

Methods: The hWJ-MSCs were cultured and used up to passage 5. The proliferation of hWJ-MSCs with 5 μM nicotine was measured by the MTT assay on the 1st, 2nd, 3rd, and 6th day. Flow cytometry analysis was used to detect cell apoptosis/necrosis by Annexin V/PI double-staining. The chondrogenic differentiation grade of hWJ-MSCs induced by TGFβ3 was assessed by the Sirius red and Alcian blue staining. The expression of markers genes was followed by quantitative real-time PCR. The expression of nAChRs was followed by RT-PCR. The functional activity of α7 nAChR was evaluated by calcium (Ca2+) influx mediated by nicotine using the Fluo-4 NW Calcium assay.

Results: The proliferation of hWJ-MSCs was significantly impaired by nicotine (5 μM) from the 3rd day of treatment, but nicotine did not significantly induce modifications on the viability of hWJ-MSCs. Alcian blue staining indicated that the amount of proteoglycan was more abundant in control group than in the nicotine group, but no difference was observed on the total collagen amount using Sirius red staining. The mRNA expression of Sox9, type II collagen (Col2a1), aggrecan in control group was higher than in the nicotine group. We found that hWJ-MSCs expressed α7 nAChR. The receptor agonist nicotine caused calcium (Ca2+) influx into hWJ-MSCs suggesting that the calcium ion channel α7 homopolymer could mediate this response.

Conclusions: At the concentration used, nicotine had an adverse effect on the proliferation and chondrogenic differentiation of hWJ-MSCs which was probably impaired through a α7 nAChR mediation.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BME-171644DOI Listing

Publication Analysis

Top Keywords

chondrogenic differentiation
16
proliferation chondrogenic
12
α7 nachr
12
nicotine
11
hwj-mscs
11
nicotine proliferation
8
human wharton's
8
wharton's jelly
8
mesenchymal stem
8
stem cells
8

Similar Publications

Chromatin-site-specific accessibility: A microtopography-regulated door into the stem cell fate.

Cell Rep

December 2024

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province 310058, China. Electronic address:

Biomaterials that mimic extracellular matrix topography are crucial in tissue engineering. Previous research indicates that certain biomimetic topography can guide stem cells toward multiple specific lineages. However, the mechanisms by which topographic cues direct stem cell differentiation remain unclear.

View Article and Find Full Text PDF

The neural crest (NC) is an embryonic cell population with high migratory capacity. It contributes to forming several organs and tissues, such as the craniofacial skeleton and the peripheral nervous system of vertebrates. Both pre-migratory and post-migratory NC cells are plastic, adopting multiple differentiation paths by responding to different inductive environmental signals.

View Article and Find Full Text PDF

Adequate hypothermic storage of human mesenchymal stem cells (hMSCs) is of fundamental importance since they have been explored in several regenerative medicine initiatives. However, the actual clinical application of hMSCs necessitates hypothermic storage for long periods, a process that requires the use of non-toxic and efficient cryo-reagents capable of maintaining high viability and differentiating properties after thawing. Current cryopreservation methods are based on cryoprotectant agents (CPAs) containing dimethylsulphoxide (DMSO), which have been shown to be toxic for clinical applications.

View Article and Find Full Text PDF

A xenogenic-free culture medium for cell micro-patterning systems as cell-instructive biomaterials for potential clinical applications.

Biomed Mater

December 2024

G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis; Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Engesserstr. 4, Freiburg im Breisgau, 79108, GERMANY.

Cell micro-patterning controls cell fate and function and has potential for generating therapeutically usable mesenchymal stromal cell (MSC) populations with precise functions. However, to date, the micro-patterning of human cells in a translational context has been impossible because only ruminant media supplements, e.g.

View Article and Find Full Text PDF

Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) can be isolated from umbilical cords which is abundant and easy to obtain. Due to their potent immunosuppressive properties, multilineage differentiation potential, and lack of ethical issues, WJ-MSCs are considered a promising candidate for therapeutic applications. However, large-scale in vitro expansion is necessary to obtain enough cells for therapeutic purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!