A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Facial Expression Recognition Based on Deep Evolutional Spatial-Temporal Networks. | LitMetric

One key challenging issue of facial expression recognition is to capture the dynamic variation of facial physical structure from videos. In this paper, we propose a part-based hierarchical bidirectional recurrent neural network (PHRNN) to analyze the facial expression information of temporal sequences. Our PHRNN models facial morphological variations and dynamical evolution of expressions, which is effective to extract "temporal features" based on facial landmarks (geometry information) from consecutive frames. Meanwhile, in order to complement the still appearance information, a multi-signal convolutional neural network (MSCNN) is proposed to extract "spatial features" from still frames. We use both recognition and verification signals as supervision to calculate different loss functions, which are helpful to increase the variations of different expressions and reduce the differences among identical expressions. This deep evolutional spatial-temporal network (composed of PHRNN and MSCNN) extracts the partial-whole, geometry-appearance, and dynamic-still information, effectively boosting the performance of facial expression recognition. Experimental results show that this method largely outperforms the state-of-the-art ones. On three widely used facial expression databases (CK+, Oulu-CASIA, and MMI), our method reduces the error rates of the previous best ones by 45.5%, 25.8%, and 24.4%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2017.2689999DOI Listing

Publication Analysis

Top Keywords

facial expression
20
expression recognition
12
facial
8
deep evolutional
8
evolutional spatial-temporal
8
neural network
8
recognition
4
recognition based
4
based deep
4
spatial-temporal networks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!