Human amnion epithelial cells (hAECs) have been shown to possess potent immunomodulatory properties across a number of disease models. Recently, we reported that hAECs influence macrophage polarization and activity, and that this step was dependent on regulatory T cells. In this study, we aimed to assess the effects of hAEC-derived proresolution lipoxin-A (LXA4) on T-cell, macrophage, and neutrophil phenotype and function during the acute phase of bleomycin-induced lung injury. Using C57Bl6 mice, we administered 4 million hAECs intraperitoneally 24 hours after bleomycin challenge. Outcomes were measured at days 3, 5, and 7. hAEC administration resulted in significant changes to T-cell, macrophage, dendritic cell, and monocyte/macrophage infiltration and phenotypes. Endogenous levels of lipoxygenases, LXA4, and the lipoxin receptor FPR2 were elevated in hAEC-treated animals. Furthermore, we showed that the effects of hAECs on macrophage phagocytic activity and T-cell suppression are LXA4 dependent, whereas the inhibition of neutrophil-derived myleoperoxidase by hAECs is independent of LXA4. This study provides the first evidence that lipid-based mediators contribute to the immunomodulatory effects of hAECs and further supports the growing body of evidence that LXA4 is proresolutionary in lung injury. This discovery of LXA4-dependent communication between hAECs, macrophages, T cells, and neutrophils is important to the understanding of hAEC biodynamics and would be expected to inform future clinical applications. Stem Cells Translational Medicine 2017;6:1085-1095.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442827PMC
http://dx.doi.org/10.5966/sctm.2016-0077DOI Listing

Publication Analysis

Top Keywords

amnion epithelial
8
epithelial cells
8
t-cell macrophage
8
lung injury
8
effects haecs
8
haecs
7
cells
5
lxa4
5
cells promote
4
promote lung
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!