Actin structure contributes to physiologic events within the nucleus to control mesenchymal stromal cell (MSC) differentiation. Continuous cytochalasin D (Cyto D) disruption of the MSC actin cytoskeleton leads to osteogenic or adipogenic differentiation, both requiring mass transfer of actin into the nucleus. Cyto D remains extranuclear, thus intranuclear actin polymerization is potentiated by actin transfer: we asked whether actin structure affects differentiation. We show that secondary actin filament branching via the Arp2/3 complex is required for osteogenesis and that preventing actin branching stimulates adipogenesis, as shown by expression profiling of osteogenic and adipogenic biomarkers and unbiased RNA-seq analysis. Mechanistically, Cyto D activates osteoblast master regulators (e.g., Runx2, Sp7, Dlx5) and novel coregulated genes (e.g., Atoh8, Nr4a3, Slfn5). Formin-induced primary actin filament formation is critical for Arp2/3 complex recruitment: osteogenesis is prevented by silencing of the formin mDia1, but not its paralog mDia2. Furthermore, while inhibition of actin, branching is a potent adipogenic stimulus, silencing of either mDia1 or mDia2 blocks adipogenic gene expression. We propose that mDia1, which localizes in the cytoplasm of multipotential MSCs and traffics into the nucleus after cytoskeletal disruption, joins intranuclear mDia2 to facilitate primary filament formation before mediating subsequent branching via Arp2/3 complex recruitment. The resulting intranuclear branched actin network specifies osteogenic differentiation, while actin polymerization in the absence of Arp2/3 complex-mediated secondary branching causes adipogenic differentiation. Stem Cells 2017;35:1624-1635.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534840PMC
http://dx.doi.org/10.1002/stem.2617DOI Listing

Publication Analysis

Top Keywords

actin structure
12
actin
12
arp2/3 complex
12
intranuclear actin
8
differentiation actin
8
osteogenic adipogenic
8
adipogenic differentiation
8
actin polymerization
8
actin filament
8
branching arp2/3
8

Similar Publications

Nestin is a type VI intermediate filament protein and a well-known neural stem cell marker. It is also expressed in high-grade cancer cells, forming copolymerized filaments with vimentin. We previously showed that nestin inhibits the binding of vimentin's tail domain to actin filaments (AFs) by steric hindrance through its large nestin tail domain (NTD), thereby increasing three-dimensional cytoskeleton network mobility, enhancing cell flexibility, and promoting cancer progression.

View Article and Find Full Text PDF

Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli.

View Article and Find Full Text PDF

Background: Cholesterol gallstone disease (CGS) is often accompanied by gallbladder contraction dysfunction and chronic inflammation, but effective therapeutic options remain limited. This study investigates whether a low-intensity pulsed ultrasound (LIPUS) treatment can improve gallbladder motility and alleviate chronic inflammation while exploring the underlying mechanisms.

Methods: Gallbladder motility was assessed through in vitro and in vivo contraction tests, while bile condition was evaluated by observing bile crystal clearance.

View Article and Find Full Text PDF

Elucidating the degradation mechanism of beef myofibrillar proteins under hydroxyl radical oxidation through the lens of cysteine oxidation modifications.

Food Chem X

January 2025

Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China.

The study aimed to assess the oxidative modification behavior of bovine myofibrillar proteins (MPs) cysteines (Cys) by hydroxyl radical (·OH) through the construction of an in vitr Fenton reaction system. The ·OH generated by the Fenton reaction induced large-scale oxidative modification of Cys, and redox proteomics identified a total of 1192 differential oxidation sites (Dos), 59 Dos were located in the MPs structure. The Cys of actin (17 Dos), myosin/myomesin (16 Dos), tenascin (12 Dos) and sarcomere (10 Dos) in the MPs structure showed active oxidative modification behavior towards ·OH, especially with the "-C-X-X-X-X-W-" structure amino acid sequence showed high sensitivity.

View Article and Find Full Text PDF

Structural insights into actin filament turnover.

Trends Cell Biol

January 2025

Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany. Electronic address:

The dynamic turnover of actin filaments drives the morphogenesis and migration of all eukaryotic cells. This review summarizes recent insights into the molecular mechanisms of actin polymerization and disassembly obtained through high-resolution structures of actin filament assemblies. We first describe how, upon polymerization, actin subunits age within the filament through changes in their associated adenine nucleotide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!