Aim: The antibacterial activities of chitosan (CS) and its derivative chitosan oligosaccharide lactate (COL) were evaluated against Aeromonas hydrophila, Edwardsiella ictaluri and Flavobacterium columnare, three highly pathogenic bacteria of warmwater finfish.
Methods And Results: The magnitude and mode of antimicrobial action on Gram-negative bacterial pathogens was investigated with an emphasis on examining the inhibition of bacterial growth and the weakening of barrier functions. Both CS and COL exhibited antibacterial activity against all three bacteria tested and their activity was dose-dependent. CS and COL completely inhibited growth of A. hydrophila at 0·8% and E. ictaluri and F. columnare at 0·4% or higher concentrations. COL was more effective in killing or inhibiting the growth of all bacteria tested. CS and COL molecules have the ability to interact with bacterial surfaces via adsorption. This was confirmed by initial decreases in the conductivity of CS or COL treated bacterial cell solutions. A marked re-increase in conductivity from 18 to 48 h was documented, which was due to the leakage of cellular ions into the solution through damaged bacterial cell membranes.
Conclusion: Both CS and COL exhibited antibacterial activity against all three bacterial species through a sequential process beginning with adsorption to bacterial surfaces culminating in the leakage of intracellular constituents and cell death.
Significance And Impact Of The Study: These findings indicate that CS-based strategies are promising candidates for exploration as alternatives to antibiotics for mitigating disease outbreaks in cultured fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jam.13460 | DOI Listing |
Antimicrob Resist Infect Control
January 2025
Department of Pediatrics, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, Republic of Korea.
Background: Clinical characteristics and outcomes of carbapenem-resistant Enterobacterales (CRE) infection and colonization have rarely been reported in patients with severe burns, who are prone to severe bacterial infections. This study aimed to evaluate clinical characteristics and outcomes of CRE infection and colonization in patients with severe burns.
Methods: The characteristics of 106 episodes of CRE acquisition (infection or colonization) in 98 patients with severe burns were evaluated by a retrospective medical record review.
Microbiome
January 2025
Department of Medicine, University of Toronto, Toronto, Canada.
Background: Genital inflammation increases HIV susceptibility and is associated with the density of pro-inflammatory anaerobes in the vagina and coronal sulcus. The penile urethra is a critical site of HIV acquisition, although correlates of urethral HIV acquisition are largely unknown. While Streptococcus mitis is a consistent component of the urethral flora, the presence of Gardnerella vaginalis has been linked with prior penile-vaginal sex and urethral inflammation.
View Article and Find Full Text PDFAnn Clin Microbiol Antimicrob
January 2025
Department of Science and Environment, Roskilde University, Roskilde, Denmark.
Background: Highly frequent colorectal cancer (CRC) is predicted to have 3.2 million novel cases by 2040. Tumor microenvironment (TME) bacteriome and metabolites are proposed to be involved in CRC development.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, 02-787, Poland.
Background: Actinobacillus pleuropneumoniae is a prevalent respiratory pathogen causing substantial economic losses in swine production worldwide. The bacterium's ability to rapidly develop antimicrobial resistance (AMR) poses a significant challenge to effective treatment and control. In Poland, limited data on A.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
Excessive vascularization during tracheal in-stent restenosis (TISR) is a significant but frequently overlooked issue. We developed an anti-inflammatory coupled anti-angiogenic airway stent (PAGL) incorporating anlotinib hydrochloride and silver nanoparticles using advanced electrospinning technology. PAGL exhibited hydrophobic surface properties, exceptional mechanical strength, and appropriate drug-release kinetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!