Nitroarenes as the Nitrogen Source in Intermolecular Palladium-Catalyzed Aryl C-H Bond Aminocarbonylation Reactions.

Angew Chem Int Ed Engl

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607-7061, USA.

Published: April 2017

A three-component palladium-catalyzed aminocarbonylation of aryl and heteroaryl sp C-H bonds using nitroarenes as the nitrogen source was achieved using Mo(CO) as the reductant and origin of the CO. This intermolecular C-H bond functionalization does not requires any exogenous ligand to be added, and our mechanism experiments indicate that the palladacycle catalyst serves two roles in the aminocarbonylation reaction: reduce the nitroarene to a nitrosoarene and activate the sp C-H bond.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201612324DOI Listing

Publication Analysis

Top Keywords

c-h bond
12
nitroarenes nitrogen
8
nitrogen source
8
source intermolecular
4
intermolecular palladium-catalyzed
4
palladium-catalyzed aryl
4
c-h
4
aryl c-h
4
bond aminocarbonylation
4
aminocarbonylation reactions
4

Similar Publications

The grafting of a -(CH)PR moiety on an NHC ligand backbone in the Mn(I) complex [Cp(CO)Mn(IMes)] followed by double deprotonation opens a route to bidentate ligands with extreme electron-donating character. Such remarkable electronic properties can even allow intramolecular sp C-H functionalization in typically inert square-planar Rh(I) dicarbonyl complexes.

View Article and Find Full Text PDF

Reported herein is the first example of a ruthenium-catalyzed C-H activation/annulation of phenothiazine-3-carbaldehydes to construct structurally diverse pyrido[3,4-]phenothiazin-3-iums with dual-emission characteristics. Novel organic single-molecule white-light materials based on pyrido[3,4-]phenothiazin-3-iums with dual-emission and thermally activated delayed fluorescence (TADF) characteristics have been developed for the first time herein. Furthermore, the dual-emission molecule could be fabricated as water-dispersed NPs, which could be applied in two-channel emission intensity ratio imaging to observe the intercellular structure and can specifically target the cell membrane.

View Article and Find Full Text PDF

A Pt(II) aqua complex supported by mesoporous silica nanoparticle (MSN)-immobilized sulfonated CNN pincer ligand featuring a rigid SiO tether was prepared. This hybrid material was tested as a catalyst in H/D exchange reactions of C(sp)-H bonds of selected aromatic substrates and DO-2,2,2-trifluoroethanol- (TFE-) mixtures or CDCOD acting as a source of exchangeable deuterium. The catalyst immobilization served as a means to not only enable the catalyst's recyclability but also minimize the coordination of sulfonate groups and the metal centers originating from different catalyst's moieties that would preserve reactive Pt(OH) fragments needed for catalytic C-H bond activation.

View Article and Find Full Text PDF

Homo-Mannich Reaction of Cyclopropanols: A Versatile Tool for Natural Product Synthesis.

Acc Chem Res

January 2025

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.

ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed.

View Article and Find Full Text PDF

The group 1 alumanyls, [{SiN}AlM] (M = K, Rb, Cs; SiN = {CHSiMeNDipp}), display a variable kinetic facility (K < Rb < Cs) toward oxidative addition of the acidic C-H bond of terminal alkynes to provide the corresponding alkali metal hydrido(alkynyl)aluminate derivatives. Theoretical analysis of the formation of these compounds through density functional theory (DFT) calculations implies that the experimentally observed changes in reaction rate are a consequence of the variable stability of the [{SiN}AlM] dimers, the integrity of which reflects the ability of M to maintain the polyhapto group 1-arene interactions necessary for dimer propagation. These observations highlight that such "on-dimer" reactivity takes place sequentially and also that the ability of each constituent Al(I) center to effect the activation of the organic substrate is kinetically differentiated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!