Volatile organic compounds emitted by human skin were sampled before and after acute barrier disruption of the volar forearm to investigate the significance of this approach to skin physiology research. A small wearable housing integrating a solid-phase micro-extraction fibre permitting rapid enclosed headspace sampling of human skin volatiles is presented, enabling non-invasive sample collection in 15 minutes, in a comfortable wearable format. Gas chromatography-mass spectrometry was utilised to separate and identify the volatile metabolites. A total of 37 compounds were identified, with aldehydes (hexanal, nonanal, decanal), acids (nonanoic, decanoic, dodecanoic, tetradecanoic and pentadecanoic acids) and hydrocarbons (squalane, squalene) predominant within the chemical profile. Acute barrier disruption was achieved through tape stripping (TS) of the stratum corneum to determine the impact on the volatile signature. Principle component analysis demonstrated there to be a discriminating volatile signature before and after TS. The dysregulation of significant features was examined. Several compounds derived from sebaceous components and their oxidation products were altered following barrier disruption, including squalane, squalene, octanal and nonanal. The upregulation of glycine was also observed, which may indicate a perturbation to the skin's natural moisturising factor production. TS impacted the hydro-lipid film that functions within the skin barrier, resulting in a differing volatile signature from affected skin. This provides a valuable non-invasive approach for scientific and clinical studies in dermatology, particularly around dermatological disorders associated with compromised barrier function.

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.13344DOI Listing

Publication Analysis

Top Keywords

barrier disruption
16
acute barrier
12
volatile signature
12
skin physiology
8
discriminating volatile
8
human skin
8
squalane squalene
8
volatile
7
barrier
6
skin
5

Similar Publications

Omics-based analysis of mitochondrial dysfunction and BBB integrity in post-COVID-19 sequelae.

Sci Rep

December 2024

Cell and Developmental Biology Laboratory, Research and Development Cell, PIMSR, Parul University, Vadodara, Gujarat, 391760, India.

The SARS-CoV-2 virus that resulted in the COVID-19 pandemic has been implicated in a range of neurological issues, such as encephalopathy, stroke, and cognitive decline. Although the precise mechanism causing these issues is unknown, mounting evidence shows that blood-brain barrier (BBB) disruption is probable2 a major factor. The integrity of the blood-brain barrier (BBB), a highly selective barrier that divides the brain from the systemic circulation, is crucial for preserving normal brain function.

View Article and Find Full Text PDF

One in five couples who wish to conceive is infertile, and half of these couples have male infertility. However, the causes of male infertility are still largely unknown. Creatine is stored in the body as an energy buffer, and the testes are its second-largest reservoir after muscles.

View Article and Find Full Text PDF

The high-altitude, low-pressure, and hypoxia environment poses a significant threat to human health, particularly causing intestinal damage and disrupting gut microbiota. This study investigates the protective effects of Brassica rapa L. crude polysaccharides (BRP) on intestinal damage in mice exposed to hypobaric hypoxic conditions.

View Article and Find Full Text PDF

Background: During coronavirus disease 2019 (COVID-19), people managing multiple chronic conditions (MCCs) experienced barriers to obtaining needed medications. The purposes of this paper are to (i) determine risk factors for difficulty obtaining medications during COVID-19, (ii) document reasons for the difficulty, and (iii) evaluate the impact on later physical and mental health outcomes.

Method: In a randomized controlled trial conducted in 2016-2021, 1969 adult primary care patients were surveyed about physical and mental health both before and during COVID-19.

View Article and Find Full Text PDF

Using a pediatric-focused lens, this review article briefly summarizes the presentation of several demyelinating and neuroinflammatory diseases using conventional magnetic resonance imaging (MRI) sequences, such as T1-weighted with and without an exogenous gadolinium-based contrast agent, T2-weighted, and fluid-attenuated inversion recovery (FLAIR). These conventional sequences exploit the intrinsic properties of tissue to provide a distinct signal contrast that is useful for evaluating disease features and monitoring treatment responses in patients by characterizing lesion involvement in the central nervous system and tracking temporal features with blood-brain barrier disruption. Illustrative examples are presented for pediatric-onset multiple sclerosis and neuroinflammatory diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!