PET/MRI: Where might it replace PET/CT?

J Magn Reson Imaging

Department of Radiology and Biomedical Imaging, University of California, San Francisco, California.

Published: November 2017

Unlabelled: Simultaneous positron emission tomography and MRI (PET/MRI) is a technology that combines the anatomic and quantitative strengths of MR imaging with physiologic information obtained from PET. PET and computed tomography (PET/CT) performed in a single scanning session is an established technology already in widespread and accepted use worldwide. Given the higher cost and complexity of operating and interpreting the studies obtained on a PET/MRI system, there has been question as to which patients would benefit most from imaging with PET/MRI versus PET/CT. In this article, we compare PET/MRI with PET/CT, detail the applications for which PET/MRI has shown promise and discuss impediments to future adoption. It is our hope that future work will prove the benefit of PET/MRI to specific groups of patients, initially those in which PET/CT and MRI are already performed, leveraging simultaneity and allowing for greater degrees of multiparametric evaluation.

Level Of Evidence: 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:1247-1262.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5623147PMC
http://dx.doi.org/10.1002/jmri.25711DOI Listing

Publication Analysis

Top Keywords

pet/mri
7
pet/mri replace
4
replace pet/ct?
4
pet/ct? unlabelled
4
unlabelled simultaneous
4
simultaneous positron
4
positron emission
4
emission tomography
4
tomography mri
4
mri pet/mri
4

Similar Publications

Nuclear Medicine and Molecular Imaging in Urothelial Cancer: Current Status and Future Directions.

Cancers (Basel)

January 2025

Urology Department, South Metropolitan Health Service, Murdoch, WA, 6150, Australia.

: The role of molecular imaging in urothelial cancer is less defined than other cancers, and its utility remains controversial due to limitations such as high urinary tracer excretion, complicating primary tumour assessment in the bladder and upper urinary tract. This review explores the current landscape of PET imaging in the clinical management of urothelial cancer, with a special emphasis on potential future advancements including emerging novel non-F FDG PET agents, PET radiopharmaceuticals, and PET-MRI applications. : We conducted a comprehensive literature search in the PubMed database, using keywords such as "PET", "PET-CT", "PET-MRI", "FDG PET", "Urothelial Cancer", and "Theranostics".

View Article and Find Full Text PDF

The substantia nigra pars compacta (SNc), one of the main dopaminergic nuclei of the brain, exerts a regulatory function on the basal ganglia circuitry via the nigro-striatal pathway but its possible dopaminergic innervation of the thalamus has been only investigated in non-human primates. The impossibility of tract-tracing studies in humans has boosted advanced MRI techniques and multi-shell high-angular resolution diffusion MRI (MS-HARDI) has promised to shed more light on the structural connectivity of subcortical structures. Here, we estimated the possible dopaminergic innervation of the human thalamus via an MS-HARDI tractography of the SNc in healthy human young adults.

View Article and Find Full Text PDF

Objectives: To evaluate 18F-DCFPyL-PET/MRI whole-gland-derived radiomics for detecting clinically significant (cs) prostate cancer (PCa) and predicting metastasis.

Methods: Therapy-naïve PCa patients who underwent 18F-DCFPyL PET/MRI were included. Whole-prostate-segmentation was performed.

View Article and Find Full Text PDF

Bipolar disorder (BD) is a prevalent mood disorder characterized by alternating episodes of depression and mania, often accompanied by varying degrees of cognitive impairment. Cognitive impairments often serve as indicators of a bleak prognosis or the likelihood of progressing to dementia. Additionally, some studies suggest that individuals diagnosed with BD may undergo a decline in hippocampal volume.

View Article and Find Full Text PDF

Background: Clinical severity and progression of lung disease in cystic fibrosis (CF) are significantly influenced by the degree of lung inflammation. Non-invasive quantitative diagnostic tools are desirable to differentiate structural and inflammatory lung changes in order to help prevent chronic airway disease. This might also be helpful for the evaluation of longitudinal effects of novel therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!