Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A detailed mechanistic investigation identified the stepwise nature of the 1,3-aryl shift, which enables our recently disclosed Al -catalyzed insertion of unactivated alkynes into the sp -sp C-C bond of benzyl alcohols. The selectivity for the rearranged product was found to be induced by the continued coordination of the aluminum catalyst to the rearranging species, which is encouraged by a reversible background reaction. This participation of the catalyst beyond the ionization step is unique in the realm of carbocation driven reactions and opens up the possibility of a catalyst-induced chiral induction in the future. Furthermore, the study represents a rare example of detailed mechanistic analysis of a reaction with a product selectivity that changes with increasing conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201700282 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!