Despite substantial progress in medical care, the morbidity rate of diabetic nephropathy (DN) remains high in patients with diabetes. Evidence suggests that connective tissue growth factor (CTGF) induced podocyte injury may contribute to DN and CTGF inhibition could reduce albuminuria. However, to date the mechanisms involved in the effect of CTGF on podocyte injury have not been fully understood. The aim of this study is to investigate the effects of therapeutic CTGF antibody on glomerular β-catenin expression and podocyte epithelial-mesenchymal transition (EMT) in diabetic mice. C57BL/6J mice were randomly divided into three groups as the following: the control, DN, and DN treated by CTGF antibody group. DN was induced by a single intraperitoneal injection of streptozotocin and then CTGF antibody was administrated three times per week for 8 weeks. Urinary albumin excretion, mesangial proliferation and matrix deposition, and β-catenin expression in glomeruli at mRNA and protein level were all increased in DN mice compared to that in the control. Besides, the development of EMT in podocytes from diabetic mice, demonstrated by the downregulation of nephrin and upregulation of desmin in glomeruli, was detected. Furthermore, blocking CTGF by specific antibody reduced albuminuria, prevented the overexpression of CTGF, as well as β-catenin, in glomeruli and subsequently ameliorated podocyte EMT in DN mice. In summary, this study suggested that CTGF antibody protected podocytes against injury in DN mice by reducing β-catenin overexpression and preventing podocyte EMT, which might provide new insight into the mechanism of CTGF inhibition in the treatment of DN. J. Cell. Biochem. 118: 3706-3712, 2017. © 2017 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.26017DOI Listing

Publication Analysis

Top Keywords

ctgf antibody
20
β-catenin expression
12
ctgf
10
diabetic nephropathy
8
mice reducing
8
glomerular β-catenin
8
expression podocyte
8
podocyte epithelial-mesenchymal
8
epithelial-mesenchymal transition
8
podocyte injury
8

Similar Publications

To elucidate the role of IGF1R inhibition in the pathogenesis of Graves' orbitopathy (GO), the effects of linsitinib (Lins) on a recombinant human TSHR antibody (M22) and IGF1 to activate TSHR and IGF1R of human orbital fibroblasts (HOFs) obtained from patients without GO (HOFs) and patients with GO (GHOFs) were studied using in vitro three-dimensional (3D) spheroid models in addition to their 2D planar cell culture. For this purpose, we evaluated 1) cellular metabolic functions by using a seahorse bioanalyzer (2D), 2) physical properties including size and stiffness of 3D spheroids, and mRNA expression of several extracellular matrix (ECM) proteins, their modulators (CCL2 LOX, CTGF, MMPs), ACTA2 and inflammatory cytokines (IL1β, IL6). Administration of IGF1 and M22 induced increases of cellular metabolic functions with the effect on HOFs being much more potent than the effect on GHOFs, suggesting that IGF1R and TSHR of GHOFs may already be stimulated.

View Article and Find Full Text PDF

Interleukin-38-overexpressing adenovirus infection in dendritic cell-based treatment enhances immunotherapy for allergic asthma via inducing Foxp3 regulatory T cells.

Biomed Pharmacother

December 2024

Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. Electronic address:

Allergic asthma is a chronic disease tied to unusual immune reactions involving type 2 T helper (Th2) cells specific to allergens. Dendritic cells (DCs) play a crucial role in guiding T-cell responses. Regulatory T (Treg) cells have the ability to suppress effector T-cell responses, and interleukin (IL)-38 is involved in Treg cell differentiation.

View Article and Find Full Text PDF

Metastasis is a crucial stage in tumour progression, and cancer-associated fibroblasts (CAFs) support metastasis through their participation in extracellular matrix (ECM) stiffness. CD248 is a possible biomarker for non-small cell lung cancer (NSCLC)-derived CAFs, but its role in mediating ECM stiffness to promote NSCLC metastasis is unknown. We investigated the significance of CD248 CAFs in activating the Hippo axis and promoting connective tissue growth factor (CTGF) expression, which affects the stromal collagen I environment and improves ECM stiffness, thereby facilitating NSCLC metastasis.

View Article and Find Full Text PDF

PAR2 activation on human tubular epithelial cells engages converging signaling pathways to induce an inflammatory and fibrotic milieu.

Front Pharmacol

June 2024

Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, Australia.

Key features of chronic kidney disease (CKD) include tubulointerstitial inflammation and fibrosis. Protease activated receptor-2 (PAR2), a G-protein coupled receptor (GPCR) expressed by the kidney proximal tubular cells, induces potent proinflammatory responses in these cells. The hypothesis tested here was that PAR2 signalling can contribute to both inflammation and fibrosis in the kidney by transactivating known disease associated pathways.

View Article and Find Full Text PDF

Background: Atherosclerosis is a chronic inflammatory disease causing a fatal plaque rupture, and its key aspect is a failure to resolve inflammation. We hypothesize that macrophage-targeted near-infrared fluorescence emitting photoactivation could simultaneously assess macrophage/lipid-rich plaques in vivo and facilitate inflammation resolution.

Methods: We fabricated a Dectin-1-targeted photoactivatable theranostic agent through the chemical conjugation of the near-infrared fluorescence-emitting photosensitizer chlorin e6 and the Dectin-1 ligand laminarin (laminarin-chlorin e6 [LAM-Ce6]).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!