Visceral leishmaniasis (VL) in Sudan caused by Leishmania donovani is fatal in susceptible individuals if untreated. Treatment with sodium stibogluconate (SSG) leads to post-kala-azar dermal leishmaniasis (PKDL) in 58% of patients. Here, Affymetrix microarrays were used to identify genes differentially expressed in lymph nodes (N=9 paired samples) pre- and post-treatment with SSG. Using the Bioconductor package limma, 438 genes from 28 869 post-quality-control probe sets were differentially expressed (P ≤.02) post- vs pretreatment. Canonical pathway analysis using Ingenuity Pathway Analysis™ identified "role of nuclear factor of activated T-cell in regulation of immune response" (P =1.35×10 ; P =4.79×10 ), "B-cell development" (P =2.04×10 ; P =.024), "Fcγ receptor-mediated phagocytosis in macrophages and monocytes" (P =2.04×10 ; P =.024) and "OX40 signalling" (P =2.82×10 ; P =.025) as pathways differentially regulated post- vs pretreatment. Major network hub genes included TP53, FN1, MYC, BCL2, JUN, SYK, RUNX2, MMP1 and ACTA2. Top endogenous upstream regulators included IL-7 (P=2.28×10 ), TNF (P=4.26×10 ), Amyloid Precursor Protein (P=4.23×10 ) and SPI1/PI.1 (P=1.17×10 ). Top predicted chemical drug regulators included the flavonoid genistein (P=4.56×10 ) and the quinoline alkaloid camptothecin (P=5.14×10 ). These results contribute to our understanding of immunopathology associated with VL and response to SSG treatment. Further replication could identify novel therapeutic strategies that improve on SSG treatment and reduce the likelihood of progression to PKDL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pim.12431 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!