The interplay between the prefrontal cortex and amygdala is proposed to explain the regulation of affective responses (pleasure/displeasure) during exercise as outlined in the dual-mode model. However, due to methodological limitations the dual-mode model has not been fully tested. In this study, prefrontal oxygenation (using near-infrared spectroscopy) and amygdala activity (reflected by eyeblink amplitude using acoustic startle methodology) were recorded during exercise standardized to metabolic processes: 80% of ventilatory threshold (below VT), at the VT, and at the respiratory compensation point (RCP). Self-reported tolerance of the intensity of exercise was assessed prior to, and affective responses recorded during exercise. The results revealed that, as the intensity of exercise became more challenging (from below VT to RCP), prefrontal oxygenation was larger and eyeblink amplitude and affective responses were reduced. Below VT and at VT, larger prefrontal oxygenation was associated with larger eyeblink amplitude. At the RCP, prefrontal oxygenation was greater in the left than right hemisphere, and eyeblink amplitude explained significant variance in affective responses (with prefrontal oxygenation) and self-reported tolerance. These findings highlight the role of the prefrontal cortex and potentially the amygdala in the regulation of affective (particularly negative) responses during exercise at physiologically challenging intensities (above VT). In addition, a psychophysiological basis of self-reported tolerance is indicated. This study provides some support of the dual-mode model and insight into the neural basis of affective responses during exercise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/psyp.12858 | DOI Listing |
Neuroscience
January 2025
School of Kinesiology and Health Science, York University, Toronto, Canada. Electronic address:
Maintaining balance while simultaneously performing other tasks is common during everyday activities. However, this dual-tasking (DT) divides attention and increases cognitive demand, which can be detrimental to stability in older adults. It is unknown if the focus of attention influences how a dual-task affects balance and whether this is detectable in middle-aged adults.
View Article and Find Full Text PDFFront Aging Neurosci
January 2025
Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, China.
Background: Studies have shown the clinical effects of repetitive transcranial magnetic stimulation (rTMS) on depression in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. The measurement of brain activation links neurobiological and functional aspects but is challenging in patients with dementia.
View Article and Find Full Text PDFPeerJ
January 2025
Faculty of Graduate Studies, Daffodil International University, Dhaka, Dhaka, Bangladesh.
Background: Functional magnetic resonance imaging (fMRI) has revolutionized our understanding of brain activity by non-invasively detecting changes in blood oxygen levels. This review explores how fMRI is used to study mind-reading processes in adults.
Methodology: A systematic search was conducted across Web of Science, PubMed, and Google Scholar.
Front Psychiatry
January 2025
Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan.
Aim: Functional neuroimaging studies have suggested that prefrontal cortex dysfunction occurs in individuals with autism spectrum disorder (ASD). Near-infrared spectroscopy (NIRS) is a noninvasive optical tool used to investigate oxygenation and hemodynamic responses in the cerebral cortex by measuring changes in oxygenated hemoglobin. Previous studies using NIRS have suggested that male children with ASD exhibit reduced hemodynamic responses in the dorsolateral prefrontal cortex; however, only a few studies examined this response in adults with ASD.
View Article and Find Full Text PDFMed Sci Sports Exerc
January 2025
Graduate Institute of Sports Pedagogy, University of Taipei, Taipei, TAIWAN.
Purpose: This study used functional near-infrared spectroscopy (fNIRS) to investigate the effects of gymnastics programs with high versus low cognitive load on children's visuospatial working memory (VSWM) and prefrontal cortex (PFC) oxygenation.
Methods: Eighty-one healthy children aged 7 to 10 from Taipei City were randomly assigned to high cognitive load (HG), low cognitive load (LG), and control (SC) groups. The HG and LG groups underwent an 8-week gymnastics program with different levels of cognitive load, while the SC group participated in a static course.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!