Communities consist of species and their interactions. They can thus be described as networks, with species as nodes and interactions as links. Within such networks, the diversity of nodes and the distribution of links may affect patterns of energy transfer between trophic levels, the dynamics of the system, and the outcome in terms of ecosystem functioning. To date, most descriptions of networks have focused on single or relatively few sites, and have oftentimes been built on poorly resolved nodes and links. Yet, comparisons of local interaction networks reveal variation in space and in time, thus spurring interest in methods and theory for understanding patterns, drivers, and consequences of this variation. Progress in this field relies on access to replicate samples of comparable food webs across large spatiotemporal scales, resolved to species rather than to compound nodes. Due to the massive efforts required, high-quality data sets are still scarce. We created a data set on a single community type sampled across Europe: willow species (Salix), willow-galling sawflies (Hymenoptera: Tenthredinidae: Nematinae: Euurina), and their natural enemies (hymenopteran parasitoids and coleopteran, lepidopteran, dipteran, and hymenopteran inquilines). Each sample was referenced in space and time, and each node resolved with the highest possible resolution, including taxonomic affinity, gall type (for herbivores), and mode of parasitism (for natural enemies). Galler survival and link structure were resolved by dissection and rearing of gall inhabitants. In total, the data set is based on 641 site visits over 29 years, and on 165,424 galls representing 96 herbivore nodes and 52 plant nodes. The dissections and rearings yielded 42,129 natural enemies belonging to 126 species, and revealed 1,173 different links. The spatiotemporal and taxonomic resolution of these data make them amenable to analyses of both ecological and evolutionary processes of network assembly. Thus, this data set will facilitate testing of important hypotheses in recent community theory, concerning, e.g., the sampling effort needed to adequately describe interaction structure within ecological communities, the impact of environmental conditions and biotic filters on the distribution of species and their interactions, and the relationship between the global "metaweb" and its local realizations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.1832DOI Listing

Publication Analysis

Top Keywords

natural enemies
16
data set
12
willow-galling sawflies
8
species interactions
8
space time
8
species
6
nodes
6
data
5
food-web structure
4
structure willow-galling
4

Similar Publications

Using natural enemies provides a sustainable method to control major agricultural pests. Hoverflies are significant natural enemies of aphids and efficient pollinators. Herbivore-induced plant volatiles (HIPVs), including ()-β-farnesene (EBF) and methyl salicylate (MeSA), are key olfactory cues mediating hoverflies behavior.

View Article and Find Full Text PDF

Comparative biology of chlorantraniliprole selected and unselected Chrysoperla carnea (Stephens) populations: Stability of resistance, inheritance mode, and realized heritability.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan. Electronic address:

Insecticide resistance in natural enemies can be used as a positive trait in integrated pest management programs by increasing the compatibility of two important tools; biological and chemical control. In this experiment, a field population of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) was selected with chlorantraniliprole for 35 generations (Chlor-Sel) developed a 100.32-fold resistance level compared to an unselected population (Unsel).

View Article and Find Full Text PDF

Volatile cues of enhanced attractiveness to Parapanteles hyposidrae (Wilkinson) wasps mediated by jasmonic and salicylic acid pathways synergism in tea plant.

Pest Manag Sci

January 2025

Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs Key Laboratory of Tea Biology and Resource Utilization, Hangzhou, China.

Background: The jasmonic acid (JA) and salicylic acid (SA) pathways are often thought to interact antagonistically in plants when mediating anti-herbivore resistance. However, we previously found that the two pathways in tea plant interact synergistically when treated with 1.5 mmol/L methyl jasmonate (MeJA) and 20 mmol/L SA at 12 h intervals (MeJA+SA treatment).

View Article and Find Full Text PDF

Response of Amblyseius swirskii to deltamethrin.

Pest Manag Sci

January 2025

Unidad Mixta Gestión Biotecnológica de Plagas UV-IVIA, Department of Genetics, Institut de Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain.

Background: The rising demand for environmentally friendly pest control highlights the importance of understanding the interaction between natural enemies and pesticides. Amblyseius swirskii, a predatory mite extensively used in biocontrol, plays a crucial role in managing pest populations in agricultural systems. Integrating this mite with selective pesticide use within integrated pest management (IPM) would significantly advance pest control and may reduce pesticide residues in the environment and agricultural produce.

View Article and Find Full Text PDF

Nymphal feeding suppresses oviposition-induced indirect plant defense in rice.

Nat Commun

January 2025

State key laboratory of rice biology and breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.

Feeding and oviposition by phytophagous insects are both known to trigger defenses in plants. Whether these two defenses functionally interact remains poorly studied, although these interactions are likely important for pests with overlapping generations. Here we investigated the differences and interaction between feeding- and oviposition-induced plant defenses triggered by the brown planthopper (BPH, Nilaparvata lugens), which gregariously feeds and oviposits on rice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!