AI Article Synopsis

  • Twist transcription factors are crucial for mesoderm development and mutations in the TWIST1 and TWIST2 genes have been linked to various craniofacial disorders in humans.
  • A new condition called Sweeney-Cox syndrome is associated with specific mutations in TWIST1 that influence frontonasal dysplasia and other malformations, marking the first report of substitutions affecting the Glu117 codon.
  • The study used C. elegans to analyze the effects of different TWIST mutations and found that they lead to varying degrees of severity in gene expression and cellular differences, supporting a dominant-negative mechanism in disease manifestation.

Article Abstract

Twist transcription factors, members of the basic helix-loop-helix family, play crucial roles in mesoderm development in all animals. Humans have two paralogous genes, TWIST1 and TWIST2, and mutations in each gene have been identified in specific craniofacial disorders. Here, we describe a new clinical entity, Sweeney-Cox syndrome, associated with distinct de novo amino acid substitutions (p.Glu117Val and p.Glu117Gly) at a highly conserved glutamic acid residue located in the basic DNA binding domain of TWIST1, in two subjects with frontonasal dysplasia and additional malformations. Although about one hundred different TWIST1 mutations have been reported in patients with the dominant haploinsufficiency Saethre-Chotzen syndrome (typically associated with craniosynostosis), substitutions uniquely affecting the Glu117 codon were not observed previously. Recently, subjects with Barber-Say and Ablepharon-Macrostomia syndromes were found to harbor heterozygous missense substitutions in the paralogous glutamic acid residue in TWIST2 (p.Glu75Ala, p.Glu75Gln and p.Glu75Lys). To study systematically the effects of these substitutions in individual cells of the developing mesoderm, we engineered all five disease-associated alleles into the equivalent Glu29 residue encoded by hlh-8, the single Twist homolog present in Caenorhabditis elegans. This allelic series revealed that different substitutions exhibit graded severity, in terms of both gene expression and cellular phenotype, which we incorporate into a model explaining the various human disease phenotypes. The genetic analysis favors a predominantly dominant-negative mechanism for the action of amino acid substitutions at this highly conserved glutamic acid residue and illustrates the value of systematic mutagenesis of C. elegans for focused investigation of human disease processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438873PMC
http://dx.doi.org/10.1093/hmg/ddx107DOI Listing

Publication Analysis

Top Keywords

glutamic acid
12
acid residue
12
twist1 twist2
8
caenorhabditis elegans
8
amino acid
8
acid substitutions
8
highly conserved
8
conserved glutamic
8
human disease
8
substitutions
7

Similar Publications

Best1 and Best2 are two members of the bestrophin family of anion channels critically involved in the prevention of retinal degeneration and maintenance of intraocular pressure, respectively. Here, we solved glutamate- and γ-aminobutyric acid (GABA)-bound Best2 structures, which delineate an intracellular glutamate binding site and an extracellular GABA binding site on Best2, respectively, identified extracellular GABA as a permeable activator of Best2, and elucidated the co-regulation of Best2 by glutamate, GABA and glutamine synthetase in vivo. We further identified multiple small molecules as activators of the bestrophin channels.

View Article and Find Full Text PDF

Fibroblast activation protein inhibitors (FAPIs) labeled with gallium-68 and lutetium-177 show potential for use in the diagnosis and treatment of various cancers expressing FAP. However, Lu-labeled FAPIs often exhibit short tumor retention time, limiting their therapeutic applications. To improve tumor retention, we synthesized three radiolabeled dimeric FAPIs, [F], [Cu], and [Ga].

View Article and Find Full Text PDF

Acyl-acyl carrier protein (acyl-ACP) reductase (AAR) is a crucial enzyme in alka(e)ne production by recombinant Escherichia coli (E. coli). Engineered AAR expressed in E.

View Article and Find Full Text PDF

Mepiquat is a contaminant produced in thermal-processed food. It can induce spleen and liver injury. However, the mechanism that mepiquat induced hepatotoxicity remains unclear.

View Article and Find Full Text PDF

Pigeon Newcastle disease (ND) is the most common viral infectious disease in the pigeon industry, caused by pigeon paramyxovirus type 1 (PPMV-1), a variant of chicken-origin Newcastle disease virus (NDV). Previous studies have identified significant amino acid differences between PPMV-1 and chicken-origin NDV at positions 347 and 349 in the hemagglutinin-neuraminidase (HN) protein, with PPMV-1 predominantly exhibiting glycine (G) at position 347 and glutamic acid (E) at position 349, while most chicken-origin NDVs show E at position 347 and aspartic acid (D) at position 349. However, the impact of these amino acid substitutions remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!