The recurrent 22q11.2 deletion is a genetic risk factor for early-onset Parkinson's disease. Adults with the associated 22q11.2 deletion syndrome (22q11.2DS) may exhibit phenotypes that could help identify those at highest risk and reveal disease trajectories. We investigated clinical and neuroimaging features relevant to Parkinson's disease in 26 adults: 13 with 22q11.2DS at genetic risk of Parkinson's disease (mean age = 41.5 years, standard deviation = 9.7), 12 healthy age and sex-matched controls, and a 22q11.2DS patient with l-DOPA-responsive early-onset Parkinson's disease. Neuroimaging included transcranial sonography and positron emission tomography using 11C-dihydrotetrabenazine (11C-DTBZ), a radioligand that binds to the presynaptic vesicular monoamine transporter. The 22q11.2DS group without Parkinson's disease demonstrated significant motor and olfactory deficits relative to controls. Eight (61.5%) were clinically classified with parkinsonism. Transcranial sonography showed a significantly larger mean area of substantia nigra echogenicity in the 22q11.2DS risk group compared with controls (P = 0.03). The 22q11.2DS patient with Parkinson's disease showed the expected pattern of severely reduced striatal 11C-DTBZ binding. The 22q11.2DS group without Parkinson's disease however showed significantly elevated striatal 11C-DTBZ binding relative to controls (∼33%; P < 0.01). Results were similar within the 22q11.2DS group for those with (n = 7) and without (n = 6) psychotic illness. These findings suggest that manifestations of parkinsonism and/or evolution to Parkinson's disease in this genetic at-risk population may include a hyperdopaminergic mechanism. Adequately powered longitudinal studies and animal models are needed to evaluate the relevance of the observed clinical and imaging phenotypes to Parkinson's disease and other disorders that are more prevalent in 22q11.2DS, such as schizophrenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/brain/awx053 | DOI Listing |
Metab Brain Dis
January 2025
Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
January 2025
Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
Parkinson's disease (PD) is a complex progressive neurodegenerative disorder and the pathogenesis and treatment methods are unknown. This aim is to investigate the effects of long non coding RNA NEAT1 (LncRNA NEAT1) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD). Immunoprecipitation and western blot were used to search for the effects of LncRNA NEAT1 on PD.
View Article and Find Full Text PDFASN Neuro
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
We previously identified a role for dAuxilin (dAux), the fly homolog of Cyclin G-associated kinase, in glial autophagy contributing to Parkinson's disease (PD). To further dissect the mechanism, we present evidence here that lack of glial dAux enhanced the phosphorylation of the autophagy-related protein Atg9 at two newly identified threonine residues, T62 and T69. The enhanced Atg9 phosphorylation in the absence of dAux promotes autophagosome formation and Atg9 trafficking to the autophagosomes in glia.
View Article and Find Full Text PDFNeurol Genet
December 2024
From the Division of Neurology (A.H.T., S.-Y.L.), Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Programa de Pós-Graduação em Ciências Médicas da Universidade Federal do Rio Grande do Sul (P.S.-A.), Clínica Santa María, Santiago, Chile; Departamento de Farmacologia (A.F.S.S.), Universidade Federal do Rio Grande do Sul; Serviço de Neurologia (A.F.S.S.), Hospital de Clínicas de Porto Alegre, Brazil; Institute of Neurogenetics (H.M., M.L.D., C.K.), University of Lübeck, Germany; Department of Biomedical Science (A.A.-A.), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; The Michael J. Fox Foundation for Parkinson's Research (J.S., B.F.), New York; Department of Medical and Molecular Genetics (C.E.W.), Indiana University, Indianapolis; Department of Neuroscience and Brain Health (M.L.D.), Metropolitan Medical Center, Manila, Philippines; Centre for Preventive Neurology (S.D., M.T.P., A.J.N.), Wolfson Institute of Population Health, Queen Mary University of London, United Kingdom; Unidad de Trastornos del Movimiento (M.T.P.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Laboratory of Neurogenetics (M.B.M.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Department of Clinical and Movement Neurosciences (M.B.M., H.R.M.), UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York; Movement Disorders Division (R.N.A.), Neurological Institute, Tel Aviv Sourasky Medical Center and Tel Aviv School of Medicine, Tel Aviv University, Israel; Molecular Medicine Laboratory and Neurology Department (K.R.K.), Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney; Translational Neurogenomics Group (K.R.K.), Genomic and Inherited Disease Program, Garvan Institute of Medical Research; and St Vincent's Healthcare Campus (K.R.K.), Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia.
Background And Objectives: In the era of precision medicine, genetic test results have become increasingly relevant in the care of patients with Parkinson disease (PD). While large research consortia are performing widespread research genetic testing to accelerate discoveries, debate continues about whether, and to what extent, the results should be returned to patients. Ethically, it is imperative to keep participants informed, especially when findings are potentially actionable.
View Article and Find Full Text PDFBiomater Sci
January 2025
Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
Reactive oxygen species (ROS) play essential roles in both physiological and pathological processes. Under physiological conditions, appropriate amounts of ROS play an important role in signaling and regulation in cells. However, too much ROS can lead to many health problems, including inflammation, cancer, delayed wound healing, neurodegenerative diseases (such as Parkinson's disease and Alzheimer's disease), and autoimmune diseases, and oxidative stress from excess ROS is also one of the most critical factors in the pathogenesis of cardiovascular and metabolic diseases such as atherosclerosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!