Purpose: To investigate the collagen and elastin architecture at the junction of the human cornea and trabecular meshwork (TM).
Methods: The cornea, TM, and ciliary body (CB) tendons of unfixed human corneal buttons were imaged with an inverted 2-photon excited fluorescence microscope (FluoView FV-1000; Olympus, Central Valley, PA). The laser (Ti:sapphire) was tuned to 850 nm for 2-photon excitation. Backscatter signals of second harmonic generation and autofluorescence were collected through a 425/30-nm emission filter and a 525/45-nm emission filter, respectively. The second harmonic generation signal corresponds to collagen fibers, and the autofluorescence signal corresponds to elastin-containing tissue. Tissue structure representations were obtained through software-generated reconstructions of consecutive and overlapping (z-stack) images through a relevant sample depth.
Results: Collagen-rich CB tendons insert into the cornea between Descemet membrane (DM) and posterior stroma along with elastin fibers originating from the TM. The CB tendons directly abut DM, and their insertion narrows as they course centrally in the cornea, giving a wedge appearance to these parallel collagen fibers. Approximately 260 μm centrally from the edge of DM, the CB tendons fan out and merge with pre-DM collagen. As the CB tendons enter the cornea, they form a dense collagenous comb-like structure orthogonal to the edge of DM and supported by a delicate elastin network of interwoven fibers originating from the TM.
Conclusions: Two-photon excited fluorescence microscopy has improved our understanding of the peripheral corneal architecture. CB tendon insertions in this region may contribute to the radial tears encountered when preparing DM endothelial keratoplasty grafts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ICO.0000000000001178 | DOI Listing |
Sci Rep
January 2025
Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, Kallam Anji Reddy Campus, 500034, Hyderabad, India.
To examine ultrastructural changes in the trabecular meshwork (TM) in patients with primary and secondary glaucoma using scanning electron microscopy (SEM). This was a qualitative descriptive hospital-based study on the ultrastructure of the TM. Pure TM samples were collected after microincisional trabeculectomy from 26 patients with primary or secondary glaucoma and 10 control samples from eye bank donor corneas.
View Article and Find Full Text PDFOphthalmol Sci
September 2024
Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California.
Purpose: With the growing popularity of badminton worldwide, the incidence of badminton-related ocular injuries is expected to rise. The high velocity of shuttlecocks renders ocular traumas particularly devastating, especially with the possibility of permanent vision loss. This study investigated the mechanism behind ocular complications through simulation analyses of mechanical stresses and pressures upon shuttlecock impact.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Ophthalmology and Visual Sciences.
The risk for developing primary open-angle glaucoma (POAG) correlates with the magnitude of ocular hypertension (OHT) and the concentration of transforming growth factor-β2 (TGFβ2) in the aqueous humor. Effective treatment of POAG requires detailed understanding of interaction between pressure sensing mechanisms in the trabecular meshwork (TM) and biochemical risk factors. Here, we employed molecular, optical, electrophysiological and tonometric strategies to establish the role of TGFβ2 in transcription and functional expression of mechanosensitive channel isoforms alongside studies of TM contractility in biomimetic hydrogels, and intraocular pressure (IOP) regulation in a mouse model of TGFβ2 -induced OHT.
View Article and Find Full Text PDFTransl Vis Sci Technol
November 2024
Santen Pharmaceutical Co., Ltd., Osaka, Japan.
Purpose: To evaluate the ocular distribution of omidenepag isopropyl (OMDI) and its active form omidenepag (OMD), an EP2 receptor agonist, after topical administration of OMDI into rabbit and monkey eyes, and to determine whether OMDI and OMD interact with target receptors or enzymes of other antiglaucoma agents.
Methods: Both eyes of six rabbits and of 14 monkeys were topically instilled with 0.03% [14C]-OMDI.
Methods Mol Biol
October 2024
Departments of Ophthalmology, Biochemistry & Molecular Biology, and Pharmacology & Toxicology, Eugene and Marilyn Glick Eye Institute, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
Human anterior segment perfusion cultures are frequently used for trabecular meshwork research. However, this model requires the use of whole eye globes which are expensive. Here, we describe a method using human corneal rims as an alternative to anterior segments for perfusion culture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!