Ultrafine Entanglement Witnessing.

Phys Rev Lett

Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia.

Published: March 2017

Entanglement witnesses are invaluable for efficient quantum entanglement certification without the need for expensive quantum state tomography. Yet, standard entanglement witnessing requires multiple measurements and its bounds can be elusive as a result of experimental imperfections. Here, we introduce and demonstrate a novel procedure for entanglement detection which simply and seamlessly improves any standard witnessing procedure by using additional available information to tighten the witnessing bounds. Moreover, by relaxing the requirements on the witness operators, our method removes the general need for the difficult task of witness decomposition into local observables. We experimentally demonstrate entanglement detection with our approach using a separable test operator and a simple fixed measurement device for each agent. Finally, we show that the method can be generalized to higher-dimensional and multipartite cases with a complexity that scales linearly with the number of parties.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.118.110502DOI Listing

Publication Analysis

Top Keywords

entanglement witnessing
8
entanglement detection
8
entanglement
5
ultrafine entanglement
4
witnessing
4
witnessing entanglement
4
entanglement witnesses
4
witnesses invaluable
4
invaluable efficient
4
efficient quantum
4

Similar Publications

Energy-filtered quantum states are promising candidates for efficiently simulating thermal states. We explore a protocol designed to transition a product state into an eigenstate located in the middle of the spectrum; this is achieved by gradually reducing its energy variance, which allows us to comprehensively understand the crossover phenomenon and the subsequent convergence toward thermal behavior. We introduce and discuss three energy-filtering regimes (short, medium, and long), and we interpret them as stages of thermalization.

View Article and Find Full Text PDF

Entanglement microscopy and tomography in many-body systems.

Nat Commun

January 2025

Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Hong Kong, Hong Kong.

Quantum entanglement uncovers the essential principles of quantum matter, yet determining its structure in realistic many-body systems poses significant challenges. Here, we employ a protocol, dubbed entanglement microscopy, to reveal the multipartite entanglement encoded in the full reduced density matrix of the microscopic subregion in spin and fermionic many-body systems. We exemplify our method by studying the phase diagram near quantum critical points (QCP) in 2 spatial dimensions: the transverse field Ising model and a Gross-Neveu-Yukawa transition of Dirac fermions.

View Article and Find Full Text PDF

How can detector click probabilities respond to spatial rotations around a fixed axis, in any possible physical theory? Here, we give a thorough mathematical analysis of this question in terms of "rotation boxes", which are analogous to the well-known notion of non-local boxes. We prove that quantum theory admits the most general rotational correlations for spins 0, 1/2, and 1, but we describe a metrological game where beyond-quantum resources of spin 3/2 outperform all quantum resources of the same spin. We prove a multitude of fundamental results about these correlations, including an exact convex characterization of the spin-1 correlations, a Tsirelson-type inequality for spins 3/2 and higher, and a proof that the general spin- correlations provide an efficient outer SDP approximation to the quantum set.

View Article and Find Full Text PDF

Testing Whether Gravity Acts as a Quantum Entity When Measured.

Phys Rev Lett

November 2024

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, England, United Kingdom.

Article Synopsis
  • Classical systems allow measurements without causing disturbance, while quantum systems do not, particularly in the context of gravity.
  • The proposed experimental setup involves multiple interferometers to measure a gravitational field created by a spatial superposition, aiming to demonstrate nonclassical effects.
  • This test is unique as it doesn't rely on specific nonclassical gravity forms or entanglement, and it can detect quantum measurement disturbance regardless of decoherence rates, making it device independent.
View Article and Find Full Text PDF

Genuine Multipartite Entanglement Detection with Imperfect Measurements: Concept and Experiment.

Phys Rev Lett

October 2024

Faculty of Physics, Vienna Center for Quantum Science and Technology (VCQ), University of Vienna, 1090 Vienna, Austria.

Standard procedures for entanglement detection assume that experimenters can exactly implement specific quantum measurements. Here, we depart from such idealizations and investigate, in both theory and experiment, the detection of genuine multipartite entanglement when measurements are subject to small imperfections. For arbitrary qubits number n, we construct multipartite entanglement witnesses where the detrimental influence of the imperfection is independent of n.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!