Entanglement witnesses are invaluable for efficient quantum entanglement certification without the need for expensive quantum state tomography. Yet, standard entanglement witnessing requires multiple measurements and its bounds can be elusive as a result of experimental imperfections. Here, we introduce and demonstrate a novel procedure for entanglement detection which simply and seamlessly improves any standard witnessing procedure by using additional available information to tighten the witnessing bounds. Moreover, by relaxing the requirements on the witness operators, our method removes the general need for the difficult task of witness decomposition into local observables. We experimentally demonstrate entanglement detection with our approach using a separable test operator and a simple fixed measurement device for each agent. Finally, we show that the method can be generalized to higher-dimensional and multipartite cases with a complexity that scales linearly with the number of parties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.118.110502 | DOI Listing |
Phys Rev Lett
December 2024
Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France.
Energy-filtered quantum states are promising candidates for efficiently simulating thermal states. We explore a protocol designed to transition a product state into an eigenstate located in the middle of the spectrum; this is achieved by gradually reducing its energy variance, which allows us to comprehensively understand the crossover phenomenon and the subsequent convergence toward thermal behavior. We introduce and discuss three energy-filtering regimes (short, medium, and long), and we interpret them as stages of thermalization.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Hong Kong, Hong Kong.
Quantum entanglement uncovers the essential principles of quantum matter, yet determining its structure in realistic many-body systems poses significant challenges. Here, we employ a protocol, dubbed entanglement microscopy, to reveal the multipartite entanglement encoded in the full reduced density matrix of the microscopic subregion in spin and fermionic many-body systems. We exemplify our method by studying the phase diagram near quantum critical points (QCP) in 2 spatial dimensions: the transverse field Ising model and a Gross-Neveu-Yukawa transition of Dirac fermions.
View Article and Find Full Text PDFCommun Math Phys
November 2024
Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria.
How can detector click probabilities respond to spatial rotations around a fixed axis, in any possible physical theory? Here, we give a thorough mathematical analysis of this question in terms of "rotation boxes", which are analogous to the well-known notion of non-local boxes. We prove that quantum theory admits the most general rotational correlations for spins 0, 1/2, and 1, but we describe a metrological game where beyond-quantum resources of spin 3/2 outperform all quantum resources of the same spin. We prove a multitude of fundamental results about these correlations, including an exact convex characterization of the spin-1 correlations, a Tsirelson-type inequality for spins 3/2 and higher, and a proof that the general spin- correlations provide an efficient outer SDP approximation to the quantum set.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, England, United Kingdom.
Phys Rev Lett
October 2024
Faculty of Physics, Vienna Center for Quantum Science and Technology (VCQ), University of Vienna, 1090 Vienna, Austria.
Standard procedures for entanglement detection assume that experimenters can exactly implement specific quantum measurements. Here, we depart from such idealizations and investigate, in both theory and experiment, the detection of genuine multipartite entanglement when measurements are subject to small imperfections. For arbitrary qubits number n, we construct multipartite entanglement witnesses where the detrimental influence of the imperfection is independent of n.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!