During Plasmodium falciparum infections, erythrocyte-stage parasites inhibit dendritic cell maturation and function, compromising effective antimalarial adaptive immunity. Human Vγ9Vδ2 T cells can act in vitro as antigen-presenting cells (APCs) and induce αβ T-cell activation. However, the relevance of this activity in vivo has remained elusive. Because Vγ9Vδ2 T cells are activated during the early immune response against P. falciparum infection, we investigated whether they could contribute to the instruction of adaptive immune responses toward malaria parasites. In P. falciparum-infected patients, Vγ9Vδ2 T cells presented increased surface expression of APC-associated markers HLA-DR and CD86. In response to infected red blood cells in vitro, Vγ9Vδ2 T cells upregulated surface expression of HLA-DR, HLA-ABC, CD40, CD80, CD83, and CD86, induced naive αβ T-cell responses, and cross- presented soluble prototypical protein to antigen-specific CD8+ T cells. Our findings qualify Vγ9Vδ2 T cells as alternative APCs, which could be harnessed for therapeutic interventions and vaccine design.

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jix149DOI Listing

Publication Analysis

Top Keywords

vγ9vδ2 cells
24
cells
9
plasmodium falciparum
8
cells vitro
8
αβ t-cell
8
surface expression
8
vγ9vδ2
6
antigen-presenting potential
4
potential vγ9vδ2
4
cells plasmodium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!