The most common material for dye-sensitized photocathodes is mesoporous NiO. We transformed the usual brownish NiO to be more transparent by reducing high valence Ni impurities. Two pretreatment methods have been used: chemical reduction by NaBH and thermal reduction by heating. The power conversion efficiency of the cell was increased by 33% through chemical treatment, and an increase in open-circuit voltage from 105 to 225 mV was obtained upon heat treatment. By optical spectroelectrochemistry, we could identify two species with characteristically different spectra assigned to Ni and Ni. We suggest that the reduction of surface Ni and Ni to Ni decreases the recombination reaction between holes on the NiO surface with the electrolyte. It also keeps the dye firmly on the surface, building a barrier for electrolyte recombination. This causes an increase in open-circuit photovoltage for the treated film.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b01532DOI Listing

Publication Analysis

Top Keywords

high valence
8
mesoporous nio
8
increase open-circuit
8
chemical physical
4
reduction
4
physical reduction
4
reduction high
4
valence states
4
states mesoporous
4
nio
4

Similar Publications

Improved Conductivity of 2D Perovskite Capping Layer for Realizing High-Performance 3D/2D Heterostructured Hole Transport Layer-Free Perovskite Photovoltaics.

ACS Nano

January 2025

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.

Perovskite solar cells (PSCs) have emerged as low-cost photovoltaic representatives. Constructing three-dimensional (3D)/two-dimensional (2D) perovskite heterostructures has been shown to effectively enhance the efficiency and stability of PSCs. However, further enhancement of device performance is still largely limited by inferior conductivity of the 2D perovskite capping layer and its mismatched energy level with the 3D perovskite layer.

View Article and Find Full Text PDF

Ferroelectrics based on van der Waals semiconductors represent an emergent class of materials for disruptive technologies ranging from neuromorphic computing to low-power electronics. However, many theoretical predictions of their electronic properties have yet to be confirmed experimentally and exploited. Here, we use nanoscale angle-resolved photoemission electron spectroscopy and optical transmission in high magnetic fields to reveal the electronic band structure of the van der Waals ferroelectric indium selenide (α-InSe).

View Article and Find Full Text PDF

VO microcubes as an alternative to peroxidase/TMB for colorimetric detection of HO: Development of glucose sensing method.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, University of Kurdistan, Sanandaj 66177-15175 Iran; Research Center for Nanotechnology, University of Kurdistan, Sanandaj 66177-15175 Iran. Electronic address:

The study focuses on the synthesis of VO microcubes for the non-enzymatic colorimetric determination of HO.Vanadium oxide nanostructures are known for their redox activity and layered structures, making VO a valuable material for sensing applications. The characterization of the prepared sample was done using XPS, XRD, Raman spectroscopy, and SEM techniques.

View Article and Find Full Text PDF

Functionalized 2D multilayered MXene for selective and continuous recovery of rare earth elements from real wastewater matrix.

J Hazard Mater

January 2025

Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, Aarhus 8000, Denmark. Electronic address:

Rare earth elements (REEs) are the "fuel" for high-tech industry, yet their selective recovery from complex waste matrices is challenging. Herein, we designed a 2D multilayered MXene TiCT adsorbent for selective extraction of REEs in a broad pH range. By establishing strong Lewis acid-base interactions, extraction capacities of TiCT to Eu(III) and Ho(III) reached 892.

View Article and Find Full Text PDF

Recent research has revealed the widespread effects of emotion on cognitive functions and memory. However, the influence of emotional valence on verbal short-term memory remains largely unexplored, especially in children. This study measured the effect of emotional valence on word immediate serial recall in 4-6-year-old French children ( = 124).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!