G-protein coupled receptors (GPCRs) are the largest and most pharmaceutically relevant family of membrane proteins. Here, fully unbiased, enhanced sampling simulations of a constitutively active mutant (CAM) of a class A GPCR, the μ-opioid receptor (μOR), demonstrates repeated transitions between the inactive (IS) and active-like (AS-L) states. The interconversion features typical activation/inactivation patterns involving established conformational rearrangements of conserved residues. By contrast, wild-type μOR remains in IS during the same course of simulation, consistent with the low basal activity of the protein. The simulations point to an important role of residue W293 at the "toggle switch" in the mutation-induced constitutive activation. Such role has been already observed for other CAMs of class A GPCRs. We also find a significantly populated intermediate state, rather similar to IS. Based on the remarkable accord between simulations and experiments, we suggest here that this state, which has escaped so far experimental characterization, might constitute an early step in the activation process of the apo μOR CAM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377942 | PMC |
http://dx.doi.org/10.1038/srep45761 | DOI Listing |
Cell Rep Phys Sci
November 2024
Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE.
Disordered single-stranded RNA (ssRNA) molecules, like their well-folded counterparts, have crucial functions that depend on their structures. However, since native ssRNAs constitute a highly heterogeneous conformer population, their structural characterization poses challenges. One important question regards the role of sequence in influencing ssRNA structure.
View Article and Find Full Text PDFGround Water
December 2024
Department of Civil and Structural Engineering, The University of Sheffield, Sheffield, UK.
Sea water intrusion (SWI) simulators are essential tools to assist the sustainable management of coastal aquifers. These simulators require the solution of coupled variable-density partial differential equations (PDEs), which reproduce the processes of groundwater flow and dissolved salt transport. The solution of these PDEs is typically addressed numerically with the use of density-dependent flow simulators, which are computationally intensive in most practical applications.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
The heterogeneity of extracellular vesicles (EVs) surface information represents different functions, which is neglected in previous studies. In this study, a label-free SERS analysis approach is demonstrated to study fundamental EV biological and physical information heterogeneity by matching specific sizes of nano-enhanced particles. This strategy reveals informative, comprehensive, and high-quality SERS spectra of the overall exosome surface, and effectively circumvents the key information loss caused by the spatial resistance of NPs binding to the 293 exosomes' concave structure.
View Article and Find Full Text PDFLangmuir
December 2024
Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, China.
Polyelectrolyte complex (PEC) hydrogels provide a promising strategy to develop a class of physically cross-linked networks characterized by exceptional toughness and self-healing properties. However, the precise control of the microstructure and the enhancement of mechanical properties still pose challenges in the field of PEC hydrogels. Herein, we propose a strategy to manipulate the structure of PEC with competitively charged surfactant micelles, leveraging the spatially confined surface charge and excluded volume effects to overcome coacervation issues associated with the PEC, thus achieving a simple one-step preparation of macroscopically uniform and tough PEC hydrogels.
View Article and Find Full Text PDFPharmacol Res Perspect
February 2025
Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
Gold nanoparticles (AuNPs) present with unique physicochemical features and potential for functionalization as anticancer agents. Three-dimensional spheroid models can be used to afford greater tissue representation due to their heterogeneous phenotype and complex molecular architecture. This study developed an A549 alveolar carcinoma spheroid model for cytotoxicity assessment and mechanistic evaluation of functionalized AuNPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!