Optical modulator based on propagating surface plasmon coupled fluorescent thin film: proof-of-concept studies.

Methods Appl Fluoresc

Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.

Published: April 2017

We demonstrate that the propagating surface plasmon coupled fluorescent thin film can be utilized as a fluorescence modulator to mimic multiple representative Boolean logic operations. Surface plasmon mediated fluorescence presents characteristic properties including directional and polarized emission, which hold the feasibility in creating a universal optical modulator. In this work, through constructing the thin layer with the specific thickness, surface plasmon mediated fluorescence can be modulated with an ON-OFF ratio by more than 5-fold, under a series of coupling configurations.

Download full-text PDF

Source
http://dx.doi.org/10.1088/2050-6120/aa6ab4DOI Listing

Publication Analysis

Top Keywords

surface plasmon
16
optical modulator
8
propagating surface
8
plasmon coupled
8
coupled fluorescent
8
fluorescent thin
8
thin film
8
plasmon mediated
8
mediated fluorescence
8
modulator based
4

Similar Publications

Cyclic Voltarefractometry of Single TiO Nanoparticles in Large Ensembles in Nonaqueous Electrolyte.

Anal Chem

January 2025

Nanobiotechnology Department of the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitaetsplatz 1, Senftenberg 01968, Brandenburg, Germany.

Single nanoparticle (NP) cyclic voltarefractometry (CVR), realized as wide-field surface plasmon resonance microscopy (SPRM) in combination with potential cycling, has been proposed and applied to the in situ study of TiO NPs. Electrochemical activity of TiO is mainly observed outside the electrochemical stability window of water. Therefore, the response of individual anatase (a-TiO) and rutile (r-TiO) NPs adsorbed on a gold layer was studied in 0.

View Article and Find Full Text PDF

One-step spray pyrolysis synthesis of ZnO/Ag hollow spheres for enhanced visible-light-driven antibacterial applications and wound healing.

Dalton Trans

January 2025

Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.

ZnO/Ag hollow particles were synthesized a one-step spray pyrolysis method for enhanced antibacterial activity and wound healing applications. The hollow structure and uniform distribution of Ag nanoparticles within the ZnO matrix were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). UV-Vis spectroscopy and Tauc plot analysis revealed a reduction in the bandgap, attributed to the surface plasmon resonance (SPR) of Ag, improving light absorption in the visible range.

View Article and Find Full Text PDF

An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.

View Article and Find Full Text PDF

Introduction: In the last decades, the recombinant tissue plasminogen activator alteplase has been the standard fibrinolytic treatment of acute myocardial infarction, pulmonary embolism, and acute ischemic stroke. An optimized version of alteplase, tenecteplase, has been developed by exchanging six amino acids to increase half-life, achieve higher fibrin selectivity and increase resistance to plasminogen activator inhibitor-1. Meanwhile, several products containing tenecteplase exist.

View Article and Find Full Text PDF

Detecting small concentrations of nitro-compounds surface-enhanced Raman spectroscopy (SERS) is reported. In particular, explosive analogues, such as 4-nitrophenol, 1-nitronaphthalene, and 5-nitroisoquinoline, and an explosive material (picric acid) are investigated and prepared by measurements using two different methods. One method involved mixing the analyte with plasmonic silver nanoparticles (Ag NPs) in a solution, followed by subsequent drop-casting of the mixture onto a silicon substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!