N-Linked glycans, extracted from patient sera and healthy control individuals, are analyzed by Matrix-assisted laser desorption ionization (MALDI) in combination with ion mobility spectrometry (IMS), mass spectrometry (MS) and pattern recognition methods. MALDI-IMS-MS data were collected in duplicate for 58 serum samples obtained from individuals diagnosed with Barrett's esophagus (BE, 14 patients), high-grade dysplasia (HGD, 7 patients), esophageal adenocarcinoma (EAC, 20 patients) and disease-free control (NC, 17 individuals). A combined mobility distribution of 9 N-linked glycans is established for 90 MALDI-IMS-MS spectra (training set) and analyzed using a genetic algorithm for feature selection and classification. Two models for phenotype delineation are subsequently developed and as a result, the four phenotypes (BE, HGD, EAC and NC) are unequivocally differentiated. Next, the two models are tested against 26 blind measurements. Interestingly, these models allowed for the correct phenotype prediction of as many as 20 blinds. Although applied to a limited number of blind samples, this methodology appears promising as a means of discovering molecules from serum that may have capabilities as markers of disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5675076 | PMC |
http://dx.doi.org/10.1039/c6an02697d | DOI Listing |
JCI Insight
January 2025
Medicine, Washington University School of Medicine, St. Louis, United States of America.
Hereditary angioedema is an autosomal dominant disorder caused by defects in C1-esterase inhibitor (C1-INH), resulting in poorly controlled activation of the kallikrein-kinin system and bradykinin overproduction. C1-INH is a heavily glycosylated protein in the serine protease inhibitor (SERPIN) family, yet the role of these glycosylation sites remains unclear. To elucidate the functional impact of N-glycosylation in the SERPIN domain of C1-INH, we engineered four sets consisting of 26 variants at or near the N-linked sequon (NXS/T).
View Article and Find Full Text PDFBBA Adv
December 2024
Genos Glycoscience Research Laboratory, Zagreb, Croatia.
Asparagine-linked glycosylation (N-glycosylation) is a common co- and post-translational modification that refers to the addition of complex carbohydrates, called N-linked glycans (N-glycans), to asparagine residues within defined sequons of polypeptide acceptors. Some N-glycans can be modified by the addition of phosphate moieties to their monosaccharide residues, thus forming phospho-N-glycans (PNGs). The most prominent such carbohydrate modification is mannose-6-phosphate (M6P) which plays a well-established role in trafficking of acid hydrolases to lysosomes.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Vegetable and Fruit Improvement Center and Department of Horticultural Sciences Texas A&M University, College Station, TX 77843, USA.
Complex N-glycans are asparagine (N)-linked branched sugar chains attached to secretory proteins in eukaryotes. They are produced by modification of N-linked oligosaccharide structures in the endoplasmic reticulum (ER) and Golgi apparatus. Complex N-glycans formed in the Golgi apparatus are often assigned specific roles unique to the host organism, with their roles in plants remaining largely unknown.
View Article and Find Full Text PDFJ Vector Borne Dis
January 2025
Department of Zoology, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka.
Background And Objectives: Salivary glands proteins but not glycoconjugates have been previously studied in mosquito vectors of human diseases. Glycoconjugates from salivary gland-derived proteins from human-feeding tick vectors can elicit hypersensitivity reactions which may also occur with mosquito bites. Protein glycoconjugate in salivary glands of the principal arboviral vector Aedes aegypti and the rapidly spreading malaria vector Anopheles stephensi were therefore investigated.
View Article and Find Full Text PDFMol Cell Proteomics
January 2025
Department of Pharmaceutical Chemistry, University of California, San Francisco.
Glycosylation is the most common and diverse modification of proteins. It can affect protein function and stability and is associated with many diseases. While proteomic methods to study most post-translational modifications are now quite mature, glycopeptide analysis is still a challenge, particularly from the aspect of data analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!