Vertebrate eggs can induce the nuclear reprogramming of somatic cells to enable production of cloned animals. Nuclear reprogramming is relatively inefficient, and the development of the resultant embryos is frequently compromised, in part due to the inappropriate expression of genes previously active in the donor nucleus. Here, we identify H3K4 methylation as a major epigenetic roadblock that limits transcriptional reprogramming and efficient nuclear transfer (NT). Widespread expression of donor-cell-specific genes was observed in inappropriate cell types in NT embryos, limiting their developmental capacity. The expression of these genes in reprogrammed embryos arises from epigenetic memories of a previously active transcriptional state in donor cells that is characterized by high H3K4 methylation. Reducing H3K4 methylation had little effect on gene expression in donor cells, but it substantially improved transcriptional reprogramming and development of NT embryos. These results show that H3K4 methylation imposes a barrier to efficient nuclear reprogramming and suggest approaches for improving reprogramming strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5505866PMC
http://dx.doi.org/10.1016/j.stem.2017.03.003DOI Listing

Publication Analysis

Top Keywords

h3k4 methylation
16
nuclear reprogramming
12
reprogramming development
8
nuclear transfer
8
expression genes
8
transcriptional reprogramming
8
efficient nuclear
8
donor cells
8
reprogramming
7
h3k4
5

Similar Publications

In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation.

View Article and Find Full Text PDF

ASH2L-Mediated H3K4 Methylation and Nephrogenesis.

J Am Soc Nephrol

January 2025

Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.

Background: Many congenital anomalies of the kidney and urinary tract involve deficits in the number of nephrons, which are associated with a higher risk of hypertension and chronic kidney disease later in life. Prior work has implicated histone modifications in regulating kidney lineage-specific gene transcription and nephron endowment. Our earlier study suggested that ASH2L, a core subunit of the H3K4 methyltransferase complex, plays a role in ureteric bud morphogenesis during mammalian kidney development.

View Article and Find Full Text PDF

Pathogenic fungi represent a diverse group of eukaryotic microorganisms that significantly impact human health and agriculture. In recent years, the role of epigenetic modifications, particularly histone modifications, in fungal pathobiology has emerged as a prominent area of interest. Among these modifications, methylation of histone H3 at lysine-4 (H3K4) has garnered considerable attention for its implications in regulating gene expression associated with diverse cellular processes.

View Article and Find Full Text PDF

SUMO-mediated regulation of H3K4me3 reader SET-26 controls germline development in C. elegans.

PLoS Biol

January 2025

Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.

Sumoylation is a posttranslational modification essential for multiple cellular functions in eukaryotes. ULP-2 is a conserved SUMO protease required for embryonic development in Caenorhabditis elegans. Here, we revealed that ULP-2 controls germline development by regulating the PHD-SET domain protein, SET-26.

View Article and Find Full Text PDF

Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!