Many toxic secondary metabolites used for defense are also toxic to the producing organism. One important way to circumvent toxicity is to store the toxin as an inactive precursor. Several sulfated diesters of the diarrhetic shellfish poisoning (DSP) toxin okadaic acid have been reported from cultures of various dinoflagellate species belonging to the genus Prorocentrum. It has been proposed that these sulfated diesters are a means of toxin storage within the dinoflagellate cell, and that a putative enzyme mediated two-step hydrolysis of sulfated diesters such as DTX-4 and DTX-5 initially leads to the formation of diol esters and ultimately to the release of free okadaic acid. However, only one diol ester and no sulfated diesters of DTX-1, a closely related DSP toxin, have been isolated leading some to speculate that this toxin is not stored as a sulfated diester and is processed by some other means. DSP components in organic extracts of two large scale Prorocentrum lima laboratory cultures have been investigated. In addition to the usual suite of okadaic acid esters, as well as the free acids okadaic acid and DTX-1, a group of corresponding diol- and sulfated diesters of both okadaic acid and DTX-1 have now been isolated and structurally characterized, confirming that both okadaic acid and DTX-1 are initially formed in the dinoflagellate cell as the non-toxic sulfated diesters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.hal.2017.01.012 | DOI Listing |
Bioorg Chem
March 2024
Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Glycerophosphodiester phosphodiesterase (GDPD) is a highly conserved enzyme in both prokaryotic and eukaryotic organisms. It catalyses the hydrolysis of various glycerophosphodiesters into glycerol-3-phosphate and corresponding alcohols, which serve as building blocks in several biosynthetic pathways. This enzyme is a well-known virulence factor in many pathogenic bacteria, including Staphylococcus aureus, and is thus considered a potential drug target.
View Article and Find Full Text PDFMolecules
September 2023
College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
This paper aims to explore the effect and mechanism of water-soluble astaxanthin succinate diester (Asta-SD) on ulcerative colitis (UC) induced by dextran sodium sulfate in zebrafish and C57BL/6J mice. Asta-SD was synthesized with hydrophilic fatty acid succinic anhydride and the hydroxyl groups at the ends of F-Asta were synthesized by esterifying. Through the construction of a zebrafish intestinal inflammation model, it was found that Asta-SD could effectively reduce the levels of ROS and increase the number of healthy intestinal lysosomes in zebrafish.
View Article and Find Full Text PDFJ Med Chem
September 2023
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China.
Phosphodiesterase 1 (PDE1) is a subfamily of PDE super enzyme families that can hydrolyze cyclic adenosine monophosphate and cyclic guanosine monophosphate simultaneously. Currently, the number of PDE1 inhibitors is relatively few, significantly limiting their application. Herein, a novel series of quinolin-2(1)-ones were designed rationally, leading to compound with an IC of 15 nM against PDE1C, high selectivity across other PDEs, and remarkable safety properties.
View Article and Find Full Text PDFPharmacol Res
September 2023
Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China. Electronic address:
In our previous multicenter study, we delineated the inherent metabolic features of colorectal cancer (CRC). Therein, we identified a member of the ectonucleotide pyrophosphatase/ phosphodiesterase family (ENPP2) as a significant differential metabolite of CRC. In this study, the role of ENPP2 in CRC has been demonstrated using established in vitro and in vivo models including ENPP2 gene knockdown, and use of the ENPP2 inhibitor, GLPG1690.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!