Developmental vitamin D (DVD) deficiency has been proposed as an important risk factor for schizophrenia. Our previous study using Sprague Dawley rats found that DVD deficiency disrupted the ontogeny of mesencephalic dopamine neurons by decreasing the mRNA level of a crucial differentiation factor of dopamine cells, the nuclear receptor related 1 protein (Nurr1). However, it remains unknown whether this reflects a reduction in dopamine cell number or in Nurr1 expression. It is also unclear if any particular subset of developing dopamine neurons in the mesencephalon is selectively affected. In this study, we employed state-of-the-art spinning disk confocal microscopy optimized for the imaging of tissue sections and 3D segmentation to assess post-mitotic dopamine cells on a single-cell basis in the rat mesencephalon at embryonic day 15. Our results showed that DVD deficiency did not alter the number, morphology, or positioning of post-mitotic dopamine cells. However, the ratio of Nurr1+TH+ cells in the substantia nigra pars compacta (SNc) compared with the ventral tegmental area (VTA) was increased in DVD-deficient embryos. In addition, the expression of Nurr1 in immature dopamine cells and mature dopamine neurons in the VTA was decreased in DVD-deficient group. Tyrosine hydroxylase was selectively reduced in SNc of DVD-deficient mesencephalon. We conclude that DVD deficiency induced early alterations in mesencephalic dopamine development may in part explain the abnormal dopamine-related behaviors found in this model. Our findings may have broader implications for how certain environmental risk factors for schizophrenia may shape the ontogeny of dopaminergic systems and by inference increase the risk of schizophrenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-017-0497-3 | DOI Listing |
Curr Diabetes Rev
July 2024
Department of Endocrinology, Peking University International Hospital, Beijing, 100001, China.
Aims: The objective of this study was to investigate the correlation between serum 25 hydroxyvitamin D [25(OH)D] levels and insulin resistance, as well as metabolic associated fatty liver disease (MAFLD) in newly diagnosed with type 2 diabetes mellitus(T2DM) patients.
Method: A retrospective analysis was conducted on 491 T2DM patients who were newly diagnosed between January 2017 and August 2022 at Peking University International Hospital. These patients were categorized into three groups based on their 25(OH)D levels.
Front Endocrinol (Lausanne)
May 2024
Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
Transl Psychiatry
June 2023
Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
Developmental vitamin D (DVD)-deficiency is an epidemiologically established risk factor for autism. Emerging studies also highlight the involvement of gut microbiome/gut physiology in autism. The current study aims to examine the effect of DVD-deficiency on a broad range of autism-relevant behavioural phenotypes and gut health.
View Article and Find Full Text PDFJ Neurochem
September 2023
Queensland Brain Institute, University of Queensland, Saint Lucia, Queensland, Australia.
Vitamin D has been identified as a key factor in dopaminergic neurogenesis and differentiation. Consequently, developmental vitamin D (DVD) deficiency has been linked to disorders of abnormal dopamine signalling with a neurodevelopmental basis such as schizophrenia. Here we provide further evidence of vitamin D's role as a mediator of dopaminergic development by showing that it increases neurite outgrowth, neurite branching, presynaptic protein re-distribution, dopamine production and functional release in various in vitro models of developing dopaminergic cells including SH-SY5Y cells, primary mesencephalic cultures and mesencephalic/striatal explant co-cultures.
View Article and Find Full Text PDFTransl Psychiatry
June 2022
Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.
Dopaminergic (DA) dysfunction is a significant feature in the pathophysiology of schizophrenia. Established developmental risk factors for schizophrenia such as maternal immune activation (MIA) or developmental vitamin D (DVD) deficiency, when modelled in animals, reveal the differentiation of early DA neurons in foetal brains is delayed suggesting this may be a convergent aetiological pathway. Here we have assessed the effects of prenatal hypoxia, another well-known developmental risk factor for schizophrenia, on developing DA systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!