Flame retardants and their metabolites in the homes and urine of pregnant women residing in California (the CHAMACOS cohort).

Chemosphere

Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA, 94704, USA.

Published: July 2017

Organophosphate flame retardants (PFRs), used in consumer products since the 1970s, persist in the environment. Restrictions on penta-polybrominated diphenyl ether (PBDE) flame retardants resulted in increased use of Firemaster 550 (FM 550), and the organophosphate triesters: tris(1,3- dichloro-2-propyl) phosphate (TDCIPP); tris(chloropropyl) phosphate (TCIPP); tris(2-chloroethyl) phosphate (TCEP); and triphenyl phosphate (TPHP). The objectives of this study were to (1) identify determinants of flame retardants (4 PFRs, PentaBDEs and FM 550) in house dust, (2) measure urinary PFR metabolites in pregnant women, and (3) estimate health risks from PFR exposure. We measured flame retardants in house dust (n = 125) and metabolites in urine (n = 310) collected in 2000-2001 from Mexican American women participating in the CHAMACOS birth cohort study in California. We detected FM 550 and PFRs, including two (TCEP and TDCIPP) known to the state of California to cause cancer, in most dust samples. The maximum TCEP and TDCIPP dust levels were among the highest ever reported although the median levels were generally lower compared to other U.S. cohorts. Metabolites of TDCIPP (BDCIPP: bis(1,3-dichloro-2-propyl) phosphate) and TPHP (DPHP: diphenyl phosphate) were detected in 78% and 79% of prenatal urine samples, respectively. We found a weak but positive correlation between TPHP in dust and DPHP in 124 paired prenatal urine samples (Spearman rho = 0.17; p = 0.06). These results provide information on PFR exposure and risk in pregnant women from the early 2000's and are also valuable to assess trends in exposure and risk given changing fire safety regulations and concomitant changes in chemical flame retardant use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491392PMC
http://dx.doi.org/10.1016/j.chemosphere.2017.03.076DOI Listing

Publication Analysis

Top Keywords

flame retardants
20
pregnant women
12
retardants pfrs
8
phosphate tphp
8
house dust
8
pfr exposure
8
tcep tdcipp
8
prenatal urine
8
urine samples
8
exposure risk
8

Similar Publications

As the volume of plastic waste from electrical and electronic equipment (WEEE) continues to rise, a significant portion is disposed of in the environment, with only a small fraction being recycled. Both disposal and recycling pose unknown health risks that require immediate attention. Existing knowledge of WEEE plastic toxicity is limited and mostly relies on epidemiological data and association studies, with few insights into the underlying toxicity mechanisms.

View Article and Find Full Text PDF

Current level, sources, and risk of human exposure to PAHs, PBDEs and PCBs in South American outdoor air: A critical review.

Environ Res

January 2025

Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil. Electronic address:

This study provides comprehensive overview of the current level, sources and human exposure risk to hazardous polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in South American outdoor air. Research documents were obtainable for only 6 countries within the target period (2014 - 2024). For all contaminants, urban concentrations exceeded that of rural/remote locations.

View Article and Find Full Text PDF

Airborne particulate matter inhalation bioaccessibility: A review of methodological aspects.

Chem Biol Interact

January 2025

Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:

Research has consistently linked exposure to particulate matter (PM) with adverse health outcomes, including cardiovascular and pulmonary morbidity and mortality. Understanding the mechanisms by which PM leads to these effects on human health is crucial for developing effective mitigation strategies. One aspect of PM research that has gained increased attention in the past few years is the bioaccessibility of inhaled PM-bound pollutants that have potential to cause adverse health effects.

View Article and Find Full Text PDF

Recent Advancements of Bio-Derived Flame Retardants for Polymeric Materials.

Polymers (Basel)

January 2025

School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

The sustainable flame retardancy of polymeric materials is a key focus for the direction of the next generation in the field of fire safety. Bio-derived flame retardants are gaining attention as environmentally friendly additives due to their low ecological impact and decreasing costs. These compounds can enhance char formation in polymeric materials by swelling upon heating, attributed to their functional groups.

View Article and Find Full Text PDF

This research follows the principles of circular economy through the zero waste concept and cascade approach performed in two steps. Our paper focuses on the first step and explores the characteristics of developed biocomposite materials made from a biodegradable poly(lactic acid) polymer (PLA) reinforced with natural fibers isolated from the second generation of biomass (agricultural biomass and weeds). Two plants, L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!