Saccharomyces cerevisiae, the conventional baker's yeast, remains the most domesticated yeast monopolizing the baking industry. Its rapid consumption of sugars and production of CO are the most important attributes required to leaven the dough. New research attempts highlight that these attributes are not unique to S. cerevisiae, but also found in several non-conventional yeast species. A small number of these yeast species with similar properties have been described, but remain poorly studied. They present a vast untapped potential for the use as leavening agents and flavor producers due to their genetic and phylogenetic diversity. We assessed the potential of several non-conventional yeasts as leavening agents and flavor producers in dough-like conditions in the presence of high sugar concentrations and stressful environments mimicking conditions found in flour dough. We tested the capabilities of bread leavening and aroma formation in a microbread platform as well as in a bakery setup. Bread leavened with Kazachstania gamospora and Wickerhamomyces subpelliculosus had better overall results compared to control baker's yeast. In addition, both displayed higher stress tolerance and broader aroma profiles than the control baker's yeast. These attributes are important in bread and other farinaceous products, making K. gamospora and W. subpelliculosus highly applicable as alternative baker's yeasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2017.03.013 | DOI Listing |
Sci Rep
December 2024
College of Biological Sciences and Technology, YiLi Normal University, Yining, 835000, People's Republic of China.
Ice wine is produced from concentrated grape juice obtained by the natural freezing and pressing of grapes. The high sugar content of this juice has an impact on fermentation. To investigate the impact of the initial sugar concentration on the fermentation of ice wine, the initial sugar concentration of Vidal ice grape juice was adjusted to 370, 450, 500 and 550 g/L by the addition of glucose.
View Article and Find Full Text PDFFish Shellfish Immunol
December 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China. Electronic address:
CyHV-2 is the pathogen of herpesvirus haematopoietic necrosis (HVHN), resulting in significant economic losses in crucian carp. Although multiple oral vaccines have been developed to prevent CyHV-2, they have not achieved ideal protective effects. To improve the protective effect of oral vaccine, a combination vaccine was conducted by mixing recombinant Saccharomyces cerevisiae displaying ORF132 or ORF25 on the cell surface in a 1:1 ratio.
View Article and Find Full Text PDFPoult Sci
December 2024
DTU National Food Institute, Research Group for Foodborne Pathogens and Epidemiology, Henrik Dams Allé, 2800 Kgs. Lyngby, Denmark.
The Campylobacter prevalence in free-ranging broiler flocks is usually higher than in conventional flocks, and effective interventions for this production type are needed. This study aimed to investigate the on-farm Campylobacter-reducing effect of feeding three feed additives or a water additive to broilers from hatching to slaughter. Newly hatched Ranger Gold broilers (n = 140) were randomly placed into five cages (n = 28/cage) within a flock of 6,000 broilers.
View Article and Find Full Text PDFSci Rep
December 2024
Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, 80-307, Poland.
This study presents characterisation of diatom's PtLPCAT1 (acyl-CoA: lysophosphatidylcholine acyltransferase) activity in phospholipid remodelling. In this research microsomal fractions of yeast Δale1 mutant overexpressing PtLPCAT1 were used as a source of the tested enzyme. In the assays evaluating remodelling of different phospholipids by PtLPCAT1 not modified microsomal fractions of the tested yeast were used.
View Article and Find Full Text PDFIn Saccharomyces cerevisiae cells, the bulk of mitochondrial DNA (mtDNA) replication is mediated by the replicative high-fidelity DNA polymerase γ. However, upon UV irradiation low-fidelity translesion polymerases: Polη, Polζ and Rev1, participate in an error-free replicative bypass of UV-induced lesions in mtDNA. We analysed how translesion polymerases could function in mitochondria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!