Higher sterols are universally present in large amounts (20-30%) in the plasma membranes of all eukaryotes whereas they are universally absent in prokaryotes. It is remarkable that each kingdom of the eukaryotes has chosen, during the course of evolution, its preferred sterol: cholesterol in animals, ergosterol in fungi and yeast, phytosterols in higher plants, and e.g., fucosterol and desmosterol in algae. The question arises as to which specific properties do sterols impart to membranes and to which extent do these properties differ among the different sterols. Using a range of biophysical techniques, including calorimetry, fluorescence microscopy, vesicle-fluctuation analysis, and atomic force microscopy, we have found that fucosterol and desmosterol, found in red and brown macroalgae (seaweeds), similar to cholesterol support liquid-ordered membrane phases and induce coexistence between liquid-ordered and liquid-disordered domains in lipid bilayers. Fucosterol and desmosterol induce acyl-chain order in liquid membranes, but less effectively than cholesterol and ergosterol in the order: cholesterol>ergosterol>desmosterol>fucosterol, possibly reflecting the different molecular structure of the sterols at the hydrocarbon tail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemphyslip.2017.03.010 | DOI Listing |
Int J Mol Sci
January 2023
Department of Internal Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands.
The nuclear receptors-liver X receptors (LXR α and β) are potential therapeutic targets in cardiovascular and neurodegenerative diseases because of their key role in the regulation of lipid homeostasis and inflammatory processes. Specific oxy(phyto)sterols differentially modulate the transcriptional activity of LXRs providing opportunities to develop compounds with improved therapeutic characteristics. We isolated oxyphytosterols from and synthesized sidechain oxidized sterol derivatives.
View Article and Find Full Text PDFSci Rep
March 2020
National Research Council of Italy, Institute of Biomolecular Chemistry, Bio-Organic Chemistry Unit, Via Campi Flegrei 34, 80078, Pozzuoli (Napoli), Italy.
Diatoms are ubiquitous microalgae that have developed remarkable metabolic plasticity and gene diversification. Here we report the first elucidation of the complete biosynthesis of sterols in the lineage. The study has been carried out on the bloom-forming species Skeletonema marinoi and Cyclotella cryptica that synthesise an ensemble of sterols with chemotypes of animals (cholesterol and desmosterol), plants (dihydrobrassicasterol and 24-methylene cholesterol), algae (fucosterol) and marine invertebrates (clionasterol).
View Article and Find Full Text PDFChem Phys Lipids
June 2017
MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
Higher sterols are universally present in large amounts (20-30%) in the plasma membranes of all eukaryotes whereas they are universally absent in prokaryotes. It is remarkable that each kingdom of the eukaryotes has chosen, during the course of evolution, its preferred sterol: cholesterol in animals, ergosterol in fungi and yeast, phytosterols in higher plants, and e.g.
View Article and Find Full Text PDFPLoS One
February 2016
Behavioral and Chemical Ecology Department, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.
Insects are increasingly being recognized not only as a source of food to feed the ever growing world population but also as potential sources of new products and therapeutic agents, among which are sterols. In this study, we sought to profile sterols and their derivatives present in the desert locust, Schistocerca gregaria, focusing on those with potential importance as dietary and therapeutic components for humans. Using coupled gas chromatography-mass spectrometry (GC-MS), we analyzed and compared the quantities of sterols in the different sections of the gut and tissues of the locust.
View Article and Find Full Text PDFJ Phycol
October 2011
REQUIMTE/Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, R. Aníbal Cunha 164, 4050-047 Porto, PortugalResearch Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, SpainGIRM - Marine Resources Research Group, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, Santuário N.ª Sra. Dos Remédios, Apartado 126, 2524-909 Peniche, Portugal.
The sterol profiles of dominant macroalgae occurring in the western Portuguese coast were evaluated. An analytical procedure, involving alkaline hydrolysis and extraction followed by separation by reversed-phase HPLC-diode array detection (HPLC-DAD), was optimized for the study of their sterols composition. The validated methodology is short in analysis time (as the compounds are determined in <20 min), sensitive, reproducible, and accurate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!