In this work a novel bioprocess for hydrogenation of CO to formate was developed, using whole cell catalysis by a sulfate-reducing bacterium. Three Desulfovibrio species were tested (D. vulgaris Hildenborough, D. alaskensis G20, and D. desulfuricans ATCC 27774), of which D. desulfuricans showed the highest activity, producing 12mM of formate in batch, with a production rate of 0.09mMh. Gene expression analysis indicated that among the three formate dehydrogenases and five hydrogenases, the cytoplasmic FdhAB and the periplasmic [FeFe] HydAB are the main enzymes expressed in D. desulfuricans in these conditions. The new bioprocess for continuous formate production by D. desulfuricans had a maximum specific formate production rate of 14mMgh, and more than 45mM of formate were obtained with a production rate of 0.40mMh. This is the first report of a continuous process for biocatalytic formate production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2017.03.091 | DOI Listing |
Virulence
January 2025
The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China.
Oxalic acid (OA), an essential pathogenic factor, has been identified in several plant pathogens, and researchers are currently pursuing studies on interference with OA metabolism as a treatment for related diseases. However, the metabolic route in remains unknown. In this study, we describe D-erythroascorbic acid-mediated OA synthesis and its metabolic and clearance pathways in rice blast fungus.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Laboratory of Analytical Biochemistry & Metabolomics, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
A simple analytical workflow is described for gas chromatographic-mass spectrometric (GC-MS)-based chiral profiling of secondary amino acids (AAs) in biological matrices. The sample preparation is carried out directly in aqueous biological sample extracts and involves in situ heptafluorobutyl chloroformate (HFBCF) derivatization-liquid-liquid microextraction of nonpolar products into hexane phase followed by subsequent formation of the corresponding methylamides from the HFB esters by direct treatment with methylamine reagent solution. The (O, N) HFB-butoxycarbonyl-methylamide AA products (HFBOC-MA) are separated on a Chirasil-L-Val capillary column and quantitatively measured by GC-MS operated in selected ion monitoring (SIM) mode.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada.
Semiconductor nanowires have become emerging photocatalysts in artificial photosynthesis processes for solar fuel production. For reduction reactions, semiconductor photocatalysts with high reducing powers are highly desirable, especially for chemicals that are extremely difficult to reduce. This study introduces a new semiconductor photocatalyst, scandium (Sc)-III-nitrides, which have higher reducing powers than all conventional semiconductor photocatalysts.
View Article and Find Full Text PDFChemSusChem
January 2025
Universität Hamburg: Universitat Hamburg, Technische und Makromolekulare Chemie, Bundesstrasse 45, 20146, Hamburg, GERMANY.
At a time when increasing attention is paid to sustainability in chemistry, levulinic acid (LA) is one of the most important platform chemicals for the goal of overcoming our dependence on fossil raw materials. In this work, a new catalytic route for the effective utilization of these humin byproducts, enabling a cyclic synthesis of LA using formic acid (FA) as organocatalyst is proposed. Selective catalytic oxidation (SCO) of humins using the H5PV2Mo10O40 (HPA-2) polyoxometalate (POM) catalyst produces FA that can be isolated from the aqueous reaction mixture by using nanofiltration membranes accompanied by a complete catalyst recycling (>99%).
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
January 2025
Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University.
This study investigates the influence of needleless versus needle-based electrospinning methods on the fiber diameter of polyamide 6 (PA6) nanofibers under comparable conditions, with an emphasis on potential pharmaceutical applications. Additionally, it examines how varying solvent systems impact fiber diameter specifically in needleless electrospinning. In this study, it was found that fibers produced by the needleless method were thicker compared to those produced by the needle-based method, a trend attributable to the specific solution characteristics and parameter settings unique to this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!