Seagrass metabolism and carbon dynamics in a tropical coastal embayment.

Ambio

National Centre for Sustainable Coastal Management (NCSCM), Ministry of Environment, Forest and Climate Change (Government of India) Koodal Building, Anna University Campus, Chennai, Tamil Nadu, 600 025, India.

Published: October 2017

Net ecosystem metabolism and subsequent changes in environmental variables were studied seasonally in the seagrass-dominated Palk Bay, located along the southeast coast of India. The results showed that although the water column was typically net heterotrophic, the ecosystem as a whole displayed autotrophic characteristics. The mean net community production from the seagrass meadows was 99.31 ± 45.13 mM C m d, while the P/R ratio varied between 1.49 and 1.56. Oxygen produced through in situ photosynthesis, exhibited higher dependence over dissolved CO and available light. Apportionment of carbon stores in biomass indicated that nearly three-fourths were available belowground compared to aboveground. However, the sediment horizon accumulated nearly 40 times more carbon than live biomass. The carbon storage capacities of the sediments and seagrass biomass were comparable with the global mean for seagrass meadows. The results of this study highlight the major role of seagrass meadows in modification of seawater chemistry. Though the seagrass meadows of Palk Bay are increasingly subject to human impacts, with coupled regulatory and management efforts focused on improved water quality and habitat conservation, these key coastal ecosystems will continue to be valuable for climate change mitigation, considering their vital role in C dynamics and interactions with the overlying water column.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595744PMC
http://dx.doi.org/10.1007/s13280-017-0916-8DOI Listing

Publication Analysis

Top Keywords

seagrass meadows
16
palk bay
8
water column
8
seagrass
6
seagrass metabolism
4
carbon
4
metabolism carbon
4
carbon dynamics
4
dynamics tropical
4
tropical coastal
4

Similar Publications

The interaction between seagrass meadow density and microplastic retention in four cool-temperate estuaries.

Mar Pollut Bull

December 2024

Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, South Africa. Electronic address:

Microplastics are widespread pollutants of estuarine ecosystems. Seagrasses have been hypothesized to filter microplastics through their dense meadows, yet the mechanisms governing their interaction with microplastics are not well understood, particularly within a South African context. Here we compared how microplastics might accumulate in the sediments associated with Zostera capensis meadows across dense and patchy meadows and unvegetated sediment.

View Article and Find Full Text PDF

This study assessed the influence of anthropogenic short-term nutrient enrichment (hereafter enriched) effects on seagrass population dynamics (recruitment, growth rate and mortality), morphometric traits, productivity, and leaf biodiversity assemblages in the islands of Andaman and Nicobar (ANI) of India and contrasted these findings with away from these enriched areas (hereafter pristine). Seagrass (Thalassia hemprichii and Cymodocea rotundata), and sediment samples were collected in the dry season (October-May) of ANI. Reconstruction techniques, an indirect measurement of plant growth was used to derive leaf plastochrone interval (PI), i.

View Article and Find Full Text PDF

Enhancing seagrass restoration success: Detecting and quantifying mechanisms of wave-induced dislodgement.

Sci Total Environ

December 2024

Leibniz University Hannover, Ludwig Franzius Institute of Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, Hannover 30167, Germany.

Seagrass meadows are one of the most productive ecosystems of the world. Seagrass enhances biodiversity, sequesters CO and functions as a coastal protection measure by mitigating waves and enhancing sedimentation. However, populations are declining in many regions and natural recolonization of bare sediment beds is protracted and unlikely.

View Article and Find Full Text PDF

Plastic pollution in marine environments is of global concern, yet its distribution within seagrasses remains poorly understood. We explore the efficiency of Posidonia oceanica in trapping microplastics (MPs) across various components (leaves, rhizomes, sediment), examine their potential transfer through the food web and assess their dispersal using advanced modelling techniques. Field surveys confirm that P.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding biodiversity is critical to predicting how ecosystems will respond to environmental changes.
  • This study examined the variations in β-diversity of amphipods living in seagrass meadows across three different biogeographical regions, focusing on both species replacement and changes in species composition over time.
  • Findings show that habitat stability significantly influences species turnover rates, with subtropical regions having more stable habitats showing higher turnover compared to less stable temperate regions, where loss of species played a larger role.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!