In the course of our studies on anti-mycobacterial substances from marine organisms, the known dimeric sphingolipid, leucettamol A (1), was isolated as an active component, together with the new bromopyrrole alkaloid, 5-bromophakelline (2), and twelve known congeners from the Indonesian marine sponge Agelas sp. The structure of 2 was elucidated based on its spectroscopic data. Compound 1 and its bis TFA salt showed inhibition zones of 12 and 7 mm against Mycobacterium smegmatis at 50 μg/disk, respectively, while the N,N'-diacetyl derivative (1a) was not active at 50 μg/disk. Therefore, free amino groups are important for anti-mycobacterial activity. This is the first study to show the anti-mycobacterial activity of a bisfunctionalized sphingolipid. Compound 13 exhibited weak PTP1B inhibitory activity (29% inhibition at 35 μM).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11418-017-1085-6DOI Listing

Publication Analysis

Top Keywords

bisfunctionalized sphingolipid
8
bromopyrrole alkaloid
8
indonesian marine
8
marine sponge
8
sponge agelas
8
anti-mycobacterial activity
8
anti-mycobacterial
4
anti-mycobacterial bisfunctionalized
4
sphingolipid bromopyrrole
4
alkaloid indonesian
4

Similar Publications

In the course of our studies on anti-mycobacterial substances from marine organisms, the known dimeric sphingolipid, leucettamol A (1), was isolated as an active component, together with the new bromopyrrole alkaloid, 5-bromophakelline (2), and twelve known congeners from the Indonesian marine sponge Agelas sp. The structure of 2 was elucidated based on its spectroscopic data. Compound 1 and its bis TFA salt showed inhibition zones of 12 and 7 mm against Mycobacterium smegmatis at 50 μg/disk, respectively, while the N,N'-diacetyl derivative (1a) was not active at 50 μg/disk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!