The increasing rate of injuries to the meniscus indicates the urgent need to develop effective repair strategies. Irreparably damaged menisci can be replaced and meniscus allografts represent the treatment of choice; however, they have several limitations, including availability and compatibility. Another approach is the use of artificial implants but their chondroprotective activities are still not proved clinically. In this situation, tissue engineering offers alternative natural decellularized extracellular matrix (ECM) scaffolds, which have shown biomechanical properties comparable to those of native menisci and are characterized by low immunogenicity and promising regenerative potential. In this article, we present an overview of meniscus decellularization methods and discuss their relative merits. In addition, we comparatively evaluate cell types used to repopulate decellularized scaffolds and analyze the biocompatibility of the existing experimental models. At present, acellular ECM hydrogels, as well as slices and powders, have been explored, which seems to be promising for partial meniscus regeneration. However, their inferior biomechanical properties (compressive and tensile stiffness) compared to natural menisci should be improved. Although an optimal decellularized meniscus scaffold still needs to be developed and thoroughly validated for its regenerative potential in vivo, we believe that decellularized ECM scaffolds are the future biomaterials for successful structural and functional replacement of menisci.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610206PMC
http://dx.doi.org/10.1007/s00441-017-2605-0DOI Listing

Publication Analysis

Top Keywords

ecm scaffolds
8
biomechanical properties
8
regenerative potential
8
meniscus
6
current advances
4
advances development
4
development natural
4
natural meniscus
4
scaffolds
4
meniscus scaffolds
4

Similar Publications

A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option.

View Article and Find Full Text PDF

Mesenchymal stromal cells promote the formation of lung cancer organoids via Kindlin-2.

Stem Cell Res Ther

January 2025

Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.

Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.

View Article and Find Full Text PDF

Simplified biomimetic peptide-based vehicle for enhanced tumor penetration and rapid enzyme-induced drug release.

J Colloid Interface Sci

January 2025

State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China. Electronic address:

Various nanodrug vehicles were well-designed with complicated functions for tumor therapy. However, the unsatisfactory tumor delivery efficiency and uncertain off-target release became the stumbling block of the nanodrugs on the way to the clinic. Inspired by efficient tumor targeting ability of albumin, we reported a simplified biomimetic peptide-based vehicle synthesized by copolymerizing L-glutamyl-L-lysine unit (EK dimer, an intrinsic surface peptide pair from albumin) with L-phenylalanine (F) to encapsulate doxorubicin (Dox).

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAF) generate an extracellular matrix (ECM) which provides a repository for factors that promote pancreatic cancer progression. Here, we establish that CAF contribution to pancreatic tumor initiation, i.e.

View Article and Find Full Text PDF

The field of wound healing faces significant challenges, particularly in the treatment of chronic wounds, which often result in prolonged healing times and complications. Recent advancements in 3D printing technology have provided innovative solutions to these challenges, offering tailored and precise approaches to wound care. This review highlights the role of 3D printing in enhancing wound healing, focusing on its application in creating biocompatible scaffolds, custom wound dressings, and drug delivery systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!