Background And Purpose: Both diffusion tensor imaging and the apparent transverse relaxation rate have shown promise in differentiating Parkinson disease from atypical parkinsonism (particularly multiple system atrophy and progressive supranuclear palsy). The objective of the study was to assess the ability of DTI, the apparent transverse relaxation rate, and their combination for differentiating Parkinson disease, multiple system atrophy, progressive supranuclear palsy, and controls.

Materials And Methods: A total of 106 subjects (36 controls, 35 patients with Parkinson disease, 16 with multiple system atrophy, and 19 with progressive supranuclear palsy) were included. DTI and the apparent transverse relaxation rate measures from the striatal, midbrain, limbic, and cerebellar regions were obtained and compared among groups. The discrimination performance of DTI and the apparent transverse relaxation rate among groups was assessed by using Elastic-Net machine learning and receiver operating characteristic curve analysis.

Results: Compared with controls, patients with Parkinson disease showed significant apparent transverse relaxation rate differences in the red nucleus. Compared to those with Parkinson disease, patients with both multiple system atrophy and progressive supranuclear palsy showed more widespread changes, extending from the midbrain to striatal and cerebellar structures. The pattern of changes, however, was different between the 2 groups. For instance, patients with multiple system atrophy showed decreased fractional anisotropy and an increased apparent transverse relaxation rate in the subthalamic nucleus, whereas patients with progressive supranuclear palsy showed an increased mean diffusivity in the hippocampus. Combined, DTI and the apparent transverse relaxation rate were significantly better than DTI or the apparent transverse relaxation rate alone in separating controls from those with Parkinson disease/multiple system atrophy/progressive supranuclear palsy; controls from those with Parkinson disease; those with Parkinson disease from those with multiple system atrophy/progressive supranuclear palsy; and those with Parkinson disease from those with multiple system atrophy; but not those with Parkinson disease from those with progressive supranuclear palsy, or those with multiple system atrophy from those with progressive supranuclear palsy.

Conclusions: DTI and the apparent transverse relaxation rate provide different but complementary information for different parkinsonisms. Combined DTI and apparent transverse relaxation rate may be a superior marker for the differential diagnosis of parkinsonisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5433885PMC
http://dx.doi.org/10.3174/ajnr.A5136DOI Listing

Publication Analysis

Top Keywords

apparent transverse
44
transverse relaxation
44
relaxation rate
44
parkinson disease
40
multiple system
32
supranuclear palsy
32
system atrophy
28
progressive supranuclear
28
dti apparent
28
atrophy progressive
20

Similar Publications

Neuronal segmentation in cephalopod arms.

Nat Commun

January 2025

Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL, USA.

Prehensile arms are among the most remarkable features of the octopus, but little is known about the neural circuitry controlling arm movements. Here, we report on the cellular and molecular organization of the arm nervous system, focusing on its massive axial nerve cords (ANCs). We found that the ANC is segmented.

View Article and Find Full Text PDF

Purpose: To implement and evaluate deep learning-based methods for the classification of pediatric brain tumors (PBT) in magnetic resonance (MR) data.

Methods: A subset of the "Children's Brain Tumor Network" dataset was retrospectively used ( = 178 subjects, female = 72, male = 102, NA = 4, age range [0.01, 36.

View Article and Find Full Text PDF

Myelin is essential in the nervous system of mammals. As the location and degree of myelin loss can reflect varied pathophysiological status, noninvasive measurement of myelin is of high importance. The magnetic resonance imaging (MRI) technique of myelin water fraction (MWF) derived from multi-echo gradient echo (MGRE) sequence is a promising tool for the quantification of myelin content due to the low specific absorption rate (SAR) compared with the spin-echo sequence, time efficiency, and wide availability.

View Article and Find Full Text PDF

Background: The detection of prostate cancer (PCa) via conventional magnetic resonance imaging (MRI) in patients with prostate-specific antigen (PSA) levels within the grey zone remains challenging. Whether synthetic MRI can provide supplementary benefits for the accurate diagnosis of PCa in this specific population is still unknown. This study aims to investigate the diagnostic performance of synthetic MRI for differentiating PCa lesions from noncancerous lesions in patients with PSA levels within the grey zone (4-10 ng/mL).

View Article and Find Full Text PDF

Background: Current protocols endorse biopsies for men with Prostate Imaging-Reporting and Data System (PI-RADS v2.1) scores ≥3. However, the subjective nature of PI-RADS can lead to increased false positives and unnecessary biopsies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!