Biological Principles of Scar and Contracture.

Hand Clin

Department of Surgery, University of Alberta, 2D2.28 WMHSC, 8440-112 Street Northwest, Edmonton, Alberta T6G 2B7, Canada. Electronic address:

Published: May 2017

Hypertrophic scar and contracture in burn patients is a complex process. Contributing factors include critical injury depth and activation of key cell subpopulations, including deep dermal fibroblasts, myofibroblasts, fibrocytes, and T-helper cells, which cause scarring rather than regeneration. These cells influence each other via cellular profibrotic and antifibrotic signals, which help to determine the outcome. These cells also both modify and interact with extracellular matrix of the wound, ultimately forming hypertrophic scar. Current treatments reduce hypertrophic scar formation or improve remodeling by targeting these pathways and signals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hcl.2016.12.004DOI Listing

Publication Analysis

Top Keywords

hypertrophic scar
12
scar contracture
8
biological principles
4
scar
4
principles scar
4
contracture hypertrophic
4
contracture burn
4
burn patients
4
patients complex
4
complex process
4

Similar Publications

Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self antigens/pathogens while preserving tolerance towards self-antigens and coordinate fibrotic responses for efficient scar formation, a distinction that is severely compromised during chronic diseases. It is clear that immune cells are not only the critical regulators of post-infarct healing and scarring but are also the key players in regulating fibroblast activation during left-ventricular (LV) remodeling.

View Article and Find Full Text PDF

Hypertrophic scars (HTSs) are the result of an abnormal healing process resulting from burns and other severe traumas. The symptoms of that condition include skin irritation, discomfort, and itching. This study aimed to assess the efficacy of fractional carbon dioxide (CO) laser therapy alone or with triamcinolone or 5-fluorouracil (FU) in the treatment of early post-burn hypertrophic scars (HTSs) that develop during the first 6 months after the injury.

View Article and Find Full Text PDF

Objective: Determine objectively noticeable features of pediatric facial scars using eye-tracking software and explore how skin tone impacts scar perception.

Study Design: Cross-sectional analysis.

Setting: Tertiary care pediatric hospital.

View Article and Find Full Text PDF

Breast cancer (BC) is a prevalent malignancy in women, often necessitating tumor resection and breast reconstruction surgeries. However, the post-operation scars can be of concern, as hypertrophic scars (HS) can profoundly impact patients' quality of life. Our study used the bidirectional Mendelian randomization (MR) method to explore the potential relationship between BC and HS.

View Article and Find Full Text PDF

Bacterial colonisation in hypertrophic scars (HSs) has been reported, yet the precise mechanism of their contribution to scar formation remains elusive. To address this, we examined HS and normal skin (NS) tissues through Gram staining and immunofluorescence. We co-cultured fibroblasts with heat-inactivated Staphylococcus aureus (S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!