https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=28362820&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 283628202017082820190208
1932-62031232017PloS onePLoS OneA large-scale stochastic spatiotemporal model for Aedes albopictus-borne chikungunya epidemiology.e0174293e0174293e017429310.1371/journal.pone.0174293Chikungunya is a viral disease transmitted to humans primarily via the bites of infected Aedes mosquitoes. The virus caused a major epidemic in the Indian Ocean in 2004, affecting millions of inhabitants, while cases have also been observed in Europe since 2007. We developed a stochastic spatiotemporal model of Aedes albopictus-borne chikungunya transmission based on our recently developed environmentally-driven vector population dynamics model. We designed an integrated modelling framework incorporating large-scale gridded climate datasets to investigate disease outbreaks on Reunion Island and in Italy. We performed Bayesian parameter inference on the surveillance data, and investigated the validity and applicability of the underlying biological assumptions. The model successfully represents the outbreak and measures of containment in Italy, suggesting wider applicability in Europe. In its current configuration, the model implies two different viral strains, thus two different outbreaks, for the two-stage Reunion Island epidemic. Characterisation of the posterior distributions indicates a possible relationship between the second larger outbreak on Reunion Island and the Italian outbreak. The model suggests that vector control measures, with different modes of operation, are most effective when applied in combination: adult vector intervention has a high impact but is short-lived, larval intervention has a low impact but is long-lasting, and quarantining infected territories, if applied strictly, is effective in preventing large epidemics. We present a novel approach in analysing chikungunya outbreaks globally using a single environmentally-driven mathematical model. Our study represents a significant step towards developing a globally applicable Ae. albopictus-borne chikungunya transmission model, and introduces a guideline for extending such models to other vector-borne diseases.ErgulerKamilK0000-0002-2674-592XEnergy, Environment and Water Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus.ChandraNastassya LNLDepartment of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London W2 1PG, United Kingdom.ProestosYiannisYEnergy, Environment and Water Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus.LelieveldJosJDepartment of Atmospheric Chemistry, Max Planck Institute for Chemistry, D-55128 Mainz, Germany.Energy, Environment and Water Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus.ChristophidesGeorge KGKDepartment of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.Computation-based Science and Technology Research Center, The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus.ParhamPaul EPEDepartment of Public Health and Policy, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3GL, United Kingdom.engJournal Article20170331
United StatesPLoS One1012850811932-6203IMAedesvirologyAnimalsBayes TheoremChikungunya FevertransmissionvirologyChikungunya viruspathogenicityDisease OutbreaksInsect VectorsvirologyModels, TheoreticalCompeting Interests: The authors have declared that no competing interests exist.
2016111620173720174160201741602017829602017331epublish28362820PMC537515810.1371/journal.pone.0174293PONE-D-16-45622Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol. 2010. July;8(7):491–500. 10.1038/nrmicro236810.1038/nrmicro236820551973 Ng LFP, Ojcius DM. Chikungunya fever—Re-emergence of an old disease. Microbes and Infection. 2009. December;11(14-15):1163–1164. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19737627 10.1016/j.micinf.2009.09.001 10.1016/j.micinf.2009.09.00119737627 Kucharz EJ, Cebula-Byrska I. Chikungunya fever. European Journal of Internal Medicine. 2012. June;23(4):325–329. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22560378 10.1016/j.ejim.2012.01.009 10.1016/j.ejim.2012.01.00922560378 Renault P, Solet JL, Sissoko D, Balleydier E, Larrieu S, Filleul L, et al. A major epidemic of chikungunya virus infection on Reunion Island, France, 2005-2006. Am J Trop Med Hyg. 2007. October;77(4):727–731. Available from: http://www.ajtmh.org/content/77/4/727.long 17978079 Lahariya C, Pradhan SK. Emergence of chikungunya virus in Indian subcontinent after 32 years: A review. J Vector Borne Dis. 2006. December;43(4):151–160. Available from: http://www.mrcindia.org/journal/issues/434151.pdf 17175699ECDC. Expert meeting on chikungunya modelling (stockholm, april 2008); 2008.ECDC, WHO. Mission Report: Chikungunya in Italy. Joint ECDC/WHO visit for a European risk assessment. 2007 dec;p. 1–26. Beltrame A, Angheben A, Bisoffi Z, Monteiro G, Marocco S, Calleri G, et al. Imported Chikungunya Infection, Italy. Emerging Infectious Diseases. 2007;13(8):1264 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828087/ 10.3201/eid1308.070161 10.3201/eid1308.070161PMC282808717953112 Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet. 2007. December;370(9602):1840–1846. Available from: http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(07)61779-6/abstract 10.1016/S0140-6736(07)61779-6 10.1016/S0140-6736(07)61779-618061059Grandadam M, Caro V, Plumet S, Thiberge JM, Souarès Y, Failloux AB, et al. Chikungunya Virus, Southeastern France. Emerging Infectious Diseases. 2011;17(5):910 Available from: /pmc/articles/PMC3321794/?report=abstract 10.3201/eid1705.10187310.3201/eid1705.101873PMC332179421529410Pialoux G, Gaüzère BA, Jauréguiberry S, Strobel M. Chikungunya, an epidemic arbovirosis. The Lancet Infectious Diseases. 2007. May;7(5):319–327. 10.1016/S1473-3099(07)70107-X10.1016/S1473-3099(07)70107-X17448935Mar∖’∖i RB, Peydró RJ. [Current status and eco-epidemiology of mosquito-borne arboviruses (Diptera: Culicidae) in Spain]. Rev Esp Salud Publica. 2010. January;84(3):255–269.20661525Centers for Disease Control and Prevention website. Chikungunya fever;. Available from: http://www.cdc.gov/chikungunyaEnserink M. Infectious diseases. Crippling virus set to conquer Western Hemisphere. Science. 2014. May;344(6185):678–679. 10.1126/science.344.6185.67810.1126/science.344.6185.67824833366Bogoch II, Brady OJ, Kraemer MUG, German M, Creatore MI, Kulkarni MA, et al. Anticipating the international spread of Zika virus from Brazil. Lancet. 2016. January;387(10016):335–336. 10.1016/S0140-6736(16)00080-510.1016/S0140-6736(16)00080-5PMC487315926777915Chouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R, Goindin D, et al. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus. PLoS Negl Trop Dis. 2016. March;10(3):e0004543 10.1371/journal.pntd.000454310.1371/journal.pntd.0004543PMC477739626938868Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, et al. Characterization of reemerging chikungunya virus. PLOS Pathog. 2007. June;3(6):e89 10.1371/journal.ppat.003008910.1371/journal.ppat.0030089PMC190447517604450Lamballerie XD, Leroy E, Charrel RN, Ttsetsarkin K, Higgs S, Gould EA. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? Virol J. 2008. February;5:33 10.1186/1743-422X-5-3310.1186/1743-422X-5-33PMC226673718304328 Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philosophical Transactions of the Royal Society B: Biological Sciences. 2015. February;370(1665):20140135 Available from: https://www.ncbi.nlm.nih.gov/pubmed/25688023 10.1098/rstb.2014.013510.1098/rstb.2014.0135PMC434296825688023Proestos Y, Christophides GK, Ergüler K, Tanarhte M, Waldock J, Lelieveld J. Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation. Philos Trans R Soc Lond, B, Biol Sci. 2015. April;370 (1665). 10.1098/rstb.2013.055410.1098/rstb.2013.0554PMC434296025688015 Rogers DJ. Dengue: recent past and future threats. Philosophical Transactions of the Royal Society B: Biological Sciences. 2015. February;370(1665):20130562 Available from: https://www.ncbi.nlm.nih.gov/pubmed/25688021 10.1098/rstb.2013.0562 10.1098/rstb.2013.0562PMC434296625688021Waldock J, Chandra NL, Lelieveld J, Proestos Y, Michael E, Christophides G, et al. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathogens and Global Health. 2013. June;p. 1–19.PMC400145223916332Rossi GC, Pascual NT, Krsticevic FJ. First record of Aedes albopictus (Skuse) from Argentina. Journal of the American Mosquito Control Association. 1999. September;15(3):42210480134 Coffinet T, Mourou JR, Pradines B, Toto JC, Jarjaval F, Amalvict R, et al. FIRST RECORD OF AEDES ALBOPICTUS IN GABON. Journal of the American Mosquito Control Association. 2007. December;23(4):471–472. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18240521 10.2987/5636.1 10.2987/5636.118240521Wang RL. Observations on the influence of photoperiod on egg diapause in Aedes albopictus Skuse. Acta Entomologica Sinica. 1966;15:75–77.Mori A, Oda T, Wada Y. Studies on the egg diapause and overwintering of Aedes albopictus in Nagasaki. Tropical Medicine. 1981;23:79–90.Hanson SM, Craig GB. Cold Acclimation, Diapause, and Geographic Origin Affect Cold Hardiness in Eggs of Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology. 1994;31(2):192–201. 10.1093/jmedent/31.2.19210.1093/jmedent/31.2.1928189409Delatte H, Gimonneau G, Triboire A, Fontenille D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. Journal of Medical Entomology. 2009. January;46(1):33–41. 10.1603/033.046.010510.1603/033.046.010519198515 Brady O, Johansson M, Guerra C, Bhatt S, Golding N, Pigott D, et al. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit Vectors. 2013. December;6(1):351 Available from: http://www.parasitesandvectors.com/content/6/1/351 10.1186/1756-3305-6-351 10.1186/1756-3305-6-351PMC386721924330720Erguler K, Smith-Unna SE, Waldock J, Proestos Y, Christophides GK, Lelieveld J, et al. Large-scale modelling of the environmentally-driven population dynamics of temperate aedes albopictus (Skuse). PLoS ONE. 2016;11(2). 10.1371/journal.pone.014928210.1371/journal.pone.0149282PMC475225126871447Parham PE, Waldock J, Christophides GK, Hemming D, Agusto F, Evans KJ, et al. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philos Trans R Soc Lond, B, Biol Sci. 2015. April;370 (1665). 10.1098/rstb.2013.055110.1098/rstb.2013.0551PMC434295725688012 Anderson R, May R. Infectious diseases of humans: dynamics and control. Wiley Online Library; 1992. January;Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1753-6405.1992.tb00056.x/full10.1111/j.1753-6405.1992.tb00056.x/fullKeeling M, Rohani P. Modeling infectious diseases in humans and animals. booksgooglecom. 2008 jan;Available from: http://books.google.com/books?hl=en&lr=&id=G8enmS23c6YC&oi=fnd&pg=PP2&dq=Keeling+MJ,+Rohani+P.+Modeling+infectious+diseases+in+humans+and+animals&ots=rFITxq6lmR&sig=IdlEkyXQ023lFIkVfdfVzAYa10IGrassly NC, Fraser C. Mathematical models of infectious disease transmission. Nat Rev Microbiol. 2008. June;6(6):477–487.PMC709758118533288Reiner RC, Perkins TA, Barker CM, Niu T, Chaves LF, Ellis AM, et al. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010. Journal of the Royal Society, Interface / the Royal Society. 2013. April;10(81):20120921 10.1098/rsif.2012.092110.1098/rsif.2012.0921PMC362709923407571 Boëlle PY, Thomas G, Vergu E, Renault P, Valleron AJ, Flahault A. Investigating Transmission in a Two-Wave Epidemic of Chikungunya Fever, R{é}union Island. Vector-Borne and Zoonotic Diseases. 2008. April;8(2):207–218. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18171107 10.1089/vbz.2006.0620 10.1089/vbz.2006.062018171107Erguler K. Environmentally-driven population dynamics model of Aedes albopictus;. Available from: https://pypi.python.org/pypi/albopictus/0.7PMC475225126871447 Dumont Y, Chiroleu F, Domerg C. On a temporal model for the Chikungunya disease: modeling, theory and numerics. Mathematical biosciences. 2008. May;213(1):80–91. Available from: http://www.sciencedirect.com/science/article/pii/S0025556408000382 10.1016/j.mbs.2008.02.008 10.1016/j.mbs.2008.02.00818394655 Dubrulle M, Mousson L, Moutailler S, Vazeille M, Failloux AB. Chikungunya Virus and Aedes Mosquitoes: Saliva Is Infectious as soon as Two Days after Oral Infection. PLoS ONE. 2009;4(6):e5895 Available from: http://dx.doi.org/10.1371%252Fjournal.pone.0005895 10.1371/journal.pone.0005895 10.1371/journal.pone.0005895PMC269082319521520 Poletti P, Messeri G, Ajelli M, Vallorani R, Rizzo C, Merler S. Transmission potential of chikungunya virus and control measures: the case of Italy. PLoS ONE. 2011. January;6(5):e18860 Available from: http://www.plosone.org/article/info%253Adoi%252F10.1371%252Fjournal.pone.0018860 10.1371/journal.pone.0018860 10.1371/journal.pone.0018860PMC308688121559329 Chhabra M, Mittal V, Bhattacharya D, Rana UVS, Lal S. Chikungunya fever: A re-emerging viral infection. Indian Journal of Medical Microbiology. 2008;26(1):5–12. Available from: http://www.ijmm.org/article.asp?issn=0255-0857;year=2008;volume=26;issue=1;spage=5;epage=12;aulast=Chhabra;t=6 10.4103/0255-0857.38850 10.4103/0255-0857.3885018227590Centers for Disease Control and Prevention website. Chikungunya fever;. Available from: http://www.cdc.gov/ncidod/dvbid/chikungunyaParola P, Lamballerie XD, Jourdan J, Rovery C, Vaillant V, Minodier P, et al. Novel chikungunya virus variant in travelers returning from Indian Ocean islands. Emerging Infect Dis. 2006. October;12(10):1493–1499. 10.3201/eid1210.06061010.3201/eid1210.060610PMC329096017176562 Vazeille M, Jeannin C, Martin E, Schaffner F, Failloux AB. Chikungunya: A risk for Mediterranean countries? Acta Tropica. 2008;105(2):200–202. Available from: http://www.sciencedirect.com/science/article/pii/S0001706X07002343 10.1016/j.actatropica.2007.09.009 10.1016/j.actatropica.2007.09.00918005927Mohan A, Kiran DHN, Manohar IC, Kumar DP. Epidemiology, clinical manifestations, and diagnosis of Chikungunya fever: lessons learned from the re-emerging epidemic. Indian J Dermatol. 2010. January;55(1):54–63. 10.4103/0019-5154.6035510.4103/0019-5154.60355PMC285637720418981Queyriaux B, Simon F, Grandadam M, Michel R, Tolou H, Boutin JP. Clinical burden of chikungunya virus infection. The Lancet Infectious Diseases. 2008. January;8(1):2–3. 10.1016/S1473-3099(07)70294-310.1016/S1473-3099(07)70294-318156079Thiboutot MM, Kannan S, Kawalekar OU, Shedlock DJ, Khan AS, Sarangan G, et al. Chikungunya: a potentially emerging epidemic? PLoS Negl Trop Dis. 2010. January;4(4):e623 10.1371/journal.pntd.000062310.1371/journal.pntd.0000623PMC286049120436958Moro ML, Gagliotti C, Silvi G, Angelini R, Sambri V, Rezza G, et al. Chikungunya virus in North-Eastern Italy: a seroprevalence survey. The American Journal of Tropical Medicine and Hygiene. 2010. March;82(3):508–511. 10.4269/ajtmh.2010.09-032210.4269/ajtmh.2010.09-0322PMC282991920207883Yakob L, Clements ACA. A mathematical model of chikungunya dynamics and control: the major epidemic on R{é}union Island. PLoS ONE. 2013. January;8(3):e57448 10.1371/journal.pone.005744810.1371/journal.pone.0057448PMC359018423554860Carrieri M, Albieri A, Angelini P, Baldacchini F, Venturelli C, Zeo SM, et al. Surveillance of the chikungunya vector Aedes albopictus (Skuse) in Emilia-Romagna (northern Italy): organizational and technical aspects of a large scale monitoring system. J Vector Ecol. 2011. June;36(1):108–116. 10.1111/j.1948-7134.2011.00147.x10.1111/j.1948-7134.2011.00147.x21635648Haylock MR, Hofstra N, Tank AMGK, Klok EJ, Jones PD, New M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. Journal of Geophysical Research: Atmospheres (1984–2012). 2008;113(D20). 10.1029/2008JD01020110.1029/2008JD010201Gridded Population of the World: Future Estimates (GPWFE) Data Collection;. CIESIN, Columbia University. Available from: http://sedac.ciesin.columbia.edu/gpw/index.jspRoeckner C E. The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology, Rep 349. 2003;p. 127. Jöckel P, Tost H, Pozzer A, Brühl C, Buchholz J, Ganzeveld L, et al. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere. Atmospheric Chemistry and Physics. 2006;6(12):5067–5104. Available from: http://www.atmos-chem-phys.net/6/5067/2006/acp-6-5067-2006.html 10.5194/acp-6-5067-200610.5194/acp-6-5067-2006Taylor K, Williamson D, Zwiers F. The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, University of California. 2000;p. 1–25. Wearing HJ, Rohani P, Keeling MJ. Appropriate models for the management of infectious diseases. PLoS Med. 2005. July;2(7):e174 Available from: http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020174 10.1371/journal.pmed.0020174 10.1371/journal.pmed.0020174PMC118187316013892Simon F, Parola P, Grandadam M, Fourcade S, Oliver M, Brouqui P, et al. Chikungunya infection: an emerging rheumatism among travelers returned from Indian Ocean islands. Report of 47 cases. Medicine (Baltimore). 2007. May;86(3):123–137. 10.1097/MD/0b013e31806010a510.1097/MD/0b013e31806010a517505252Borgherini G, Poubeau P, Jossaume A, Gouix A, Cotte L, Michault A, et al. Persistent arthralgia associated with chikungunya virus: a study of 88 adult patients on reunion island. CLIN INFECT DIS. 2008. August;47(4):469–475. 10.1086/59000310.1086/59000318611153Schilte C, Staikowsky F, Staikovsky F, Couderc T, Madec Y, Carpentier F, et al. Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLoS Negl Trop Dis. 2013. January;7(3):e2137 10.1371/journal.pntd.000213710.1371/journal.pntd.0002137PMC360527823556021Simon F, Javelle E, Oliver M, Leparc-Goffart I, Marimoutou C. Chikungunya virus infection. Curr Infect Dis Rep. 2011. June;13(3):218–228. 10.1007/s11908-011-0180-110.1007/s11908-011-0180-1PMC308510421465340 Lloyd AL, Zhang J, Root AM. Stochasticity and heterogeneity in host-vector models. Journal of the Royal Society, Interface / the Royal Society. 2007;4(16):851–863. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2394551&tool=pmcentrez&rendertype=abstract 10.1098/rsif.2007.1064 10.1098/rsif.2007.1064PMC239455117580290 Ruiz-Moreno D, Vargas IS, Olson KE, Harrington LC. Modeling dynamic introduction of Chikungunya virus in the United States. PLoS Negl Trop Dis. 2012. January;6(11):e1918 Available from: http://www.plosntds.org/article/info%253Adoi%252F10.1371%252Fjournal.pntd.0001918 10.1371/journal.pntd.0001918 10.1371/journal.pntd.0001918PMC351015523209859Robinson M, Conan A, Duong V, Ly S, Ngan C, Buchy P, et al. A model for a chikungunya outbreak in a rural Cambodian setting: implications for disease control in uninfected areas. PLoS Negl Trop Dis. 2014. September;8(9):e3120 10.1371/journal.pntd.000312010.1371/journal.pntd.0003120PMC416132525210729Honório NA, da Costa Silva W, Leite PJ, Gonçalves JM, Lounibos LP, Lourenço-de Oliveira R. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz. 2003. March;98(2):191–198. 10.1590/S0074-0276200300020000510.1590/S0074-0276200300020000512764433Wilson ME. Travel and the emergence of infectious diseases. J Agromedicine. 2004. January;9(2):161–177.19785214Tandon N, Ray S. Host Feeding Pattern of Aedes aegypti and Aedes albopictus in Kolkata India. Dengue Bulletin. 2000;24:117–120.Richards SL, Ponnusamy L, Unnasch TR, Hassan HK, Apperson CS. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in relation to availability of human and domestic animals in suburban landscapes of central North Carolina. Journal of medical entomology. 2006;43(3):543 10.1093/jmedent/43.3.54310.1093/jmedent/43.3.543PMC257702016739414 Delatte H, Desvars A, Bouétard A, Bord S, Gimonneau G, Vourc’h G, et al. Blood-feeding behavior of Aedes albopictus, a vector of Chikungunya on La Réunion. Vector Borne and Zoonotic Diseases. 2010;10(3):249–258. Available from: http://prodinra.inra.fr/?locale=fr#!ConsultNotice:226222 10.1089/vbz.2009.0026 10.1089/vbz.2009.002619589060Macdonald G. The epidemiology and control of malaria. The Epidemiology and Control of Malaria. 1957 jan;Available from: http://www.cabdirect.org/abstracts/19581000237.htmlErickson RA, Presley SM, Allen LJS, Long KR, Cox SB. A dengue model with a dynamic Aedes albopictus vector population. Ecological Modelling. 2010. December;221(24):2899–2908. Available from: 10.1016/j.ecolmodel.2010.08.03610.1016/j.ecolmodel.2010.08.036Guzzetta G, Montarsi F, Baldacchino… F. Potential risk of dengue and chikungunya outbreaks in northern italy based on a population model of aedes albopictus (diptera: Culicidae). PLoS Negl Trop {…}. 2016 jan;Available from: http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0004762PMC490927427304211 Chitnis N, Hyman JM, Manore CA. Modelling vertical transmission in vector-borne diseases with applications to Rift Valley fever. Journal of Biological Dynamics. 2013;7(1):11–40. Available from: http://www.tandfonline.com/doi/abs/10.1080/17513758.2012.733427#.Vlw-Or8asdY 10.1080/17513758.2012.733427 10.1080/17513758.2012.733427#.Vlw-Or8asdY10.1080/17513758.2012.733427PMC426036023098257Manore CA, Hickmann KS, Xu S, Wearing HJ, Hyman JM. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. Journal of Theoretical Biology. 2014;356:174–191. 10.1016/j.jtbi.2014.04.03310.1016/j.jtbi.2014.04.033PMC410936524801860Sattenspiel L, Dietz K. A structured epidemic model incorporating geographic mobility among regions. Mathematical biosciences. 1995. January;128(1-2):71–91. 10.1016/0025-5564(94)00068-B10.1016/0025-5564(94)00068-B7606146Smith DL, Dushoff J, McKenzie FE. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol. 2004. November;2(11):e368 10.1371/journal.pbio.002036810.1371/journal.pbio.0020368PMC52425215510228Kamgang B, Ngoagouni C, Manirakiza A, Nakouné E, Paupy C, Kazanji M. Temporal patterns of abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and mitochondrial DNA analysis of Ae. albopictus in the Central African Republic. PLoS Negl Trop Dis. 2013. January;7(12):e2590 10.1371/journal.pntd.000259010.1371/journal.pntd.0002590PMC386119224349596 Paquet C, Quatresous I, Solet JL, Sissoko D, Renault P, Pierre V, et al. Chikungunya outbreak in Reunion: epidemiology and surveillance, 2005 to early January 2006. Euro Surveill. 2006. January;11(2):E060202.3 Available from: http://www.ncbi.nlm.nih.gov/pubmed?Db=pubmed&Cmd=Retrieve&list_uids=16804203&dopt=abstractplus 16804203National Institute of Statistics and Economic Studies—France;. Available from: http://www.insee.fr/fr/themes/detail.asp?reg_id=0&ref_id=donnees-carroyees&page=donnees-detaillees/donnees-carroyees/donnees-carroyees-km.htmCarrieri M, Angelini P, Venturelli C, Maccagnani B, Bellini R. Aedes albopictus (Diptera: Culicidae) population size survey in the 2007 chikungunya outbreak area in Italy. II: Estimating epidemic thresholds. me. 2012. March;49(2):388–399.22493859 Dalla Pozza GL, Romi R, Severini C. Source and spread of Aedes albopictus in the Veneto region of Italy. J Am Mosq Control Assoc. 1994;10(4):589–592. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7707070 7707070Mattingly PF. New Records and a New Species of the Subgenus Stegomyia (Diptera, Culicidae) from the Ethiopian Region. Annals of Tropical Medicine & Parasitology. 1953. October;47(3):294–298. Available from: 10.1080/00034983.1953.1168557110.1080/00034983.1953.1168557113105259Paupy C, Girod R, Salvan M, Rodhain F, Failloux aB. Population structure of Aedes albopictus from La Réunion Island (Indian Ocean) with respect to susceptibility to a dengue virus. Heredity. 2001;87(Pt 3):273–283. 10.1046/j.1365-2540.2001.00866.x10.1046/j.1365-2540.2001.00866.x11737274Hanson SM, Craig GB. Cold acclimation, diapause, and geographic origin affect cold hardiness in eggs of Aedes albopictus (Diptera: Culicidae). J Med Entomol. 1994. March;31(2):192–201. 10.1093/jmedent/31.2.19210.1093/jmedent/31.2.1928189409Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of Royal Society Interface. 2008. December;6(31):187–202. 10.1098/rsif.2008.017210.1098/rsif.2008.0172PMC265865519205079Wilkinson RD. Approximate Bayesian computation (ABC) gives exact results under the assumption of model error. Stat Appl Genet Mol Biol. 2013. May;12(2):129–141.23652634Stumpf MPH. Approximate Bayesian inference for complex ecosystems. F1000Prime Rep. 2014. January;6:60 10.12703/P6-6010.12703/P6-60PMC413669525152812 e Oliveira HA Junior, Ingber L, Petraglia A, Petraglia MR, Machado MAS. Adaptive Simulated Annealing. Stochastic Global Optimization and Its Applications with Fuzzy Adaptive Simulated Annealing. 2012;35:33–62. Available from: http://link.springer.com/chapter/10.1007/978-3-642-27479-4_4 10.1007/978-3-642-27479-4_410.1007/978-3-642-27479-4_410.1007/978-3-642-27479-4_4Erguler K. hoppMCMC: an adaptive basin-hopping Markov-chain Monte Carlo algorithm for Bayesian optimisation; 2015. [version 0.5]. Available from: http://pypi.python.org/pypi/hoppMCMC Drovandi CC, Pettitt AN, Faddy MJ. Approximate Bayesian computation using indirect inference. Journal of the Royal Statistical Society: Series C (Applied Statistics). 2011. January;60(3):317–337. Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9876.2010.00747.x/abstract 10.1111/j.1467-9876.2010.00747.x10.1111/j.1467-9876.2010.00747.x/abstract10.1111/j.1467-9876.2010.00747.xFilippi S, Barnes CP, Cornebise J, Stumpf MPH. On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo. Statistical Applications in Genetics and Molecular Biology. 2013. March;12(1):87–107. 10.1515/sagmb-2012-006910.1515/sagmb-2012-006923502346Liepe J, Kirk P, Filippi S, Toni T, Barnes CP, Stumpf MPH. A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation. Nature Protocols. 2014. February;9(2):439–456. 10.1038/nprot.2014.02510.1038/nprot.2014.025PMC508109724457334 Erguler K, Stumpf MPH. Practical limits for reverse engineering of dynamical systems: a statistical analysis of sensitivity and parameter inferability in systems biology models. Molecular bioSystems. 2011;7(5):1593–602. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21380410 10.1039/c0mb00107d 10.1039/c0mb00107d21380410Komorowski M, Costa MJ, Rand DA, Stumpf MPH. Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proc Natl Acad Sci USA. 2011. May;108(21):8645–8650. 10.1073/pnas.101581410810.1073/pnas.1015814108PMC310236921551095Liepe J, Filippi S, Komorowski M, Stumpf MPH. Maximizing the information content of experiments in systems biology. PLoS Computational Biology. 2013. January;9(1):e1002888 10.1371/journal.pcbi.100288810.1371/journal.pcbi.1002888PMC356108723382663Silk D, Kirk PDW, Barnes CP, Toni T, Stumpf MPH. Model selection in systems biology depends on experimental design. PLoS Computational Biology. 2014. June;10(6):e1003650 10.1371/journal.pcbi.100365010.1371/journal.pcbi.1003650PMC405565924922483Bacaër N. Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population. Bull Math Biol. 2007. April;69(3):1067–1091. 10.1007/s11538-006-9166-910.1007/s11538-006-9166-917265121Gérardin P, Guernier V, Perrau J, Fianu A, Roux KL, Grivard P, et al. Estimating Chikungunya prevalence in La R{é}union Island outbreak by serosurveys: two methods for two critical times of the epidemic. BMC Infect Dis. 2008. January;8:99 10.1186/1471-2334-8-9910.1186/1471-2334-8-99PMC252801118662384Dommar CJ, Lowe R, Robinson M, Rodó X. An agent-based model driven by tropical rainfall to understand the spatio-temporal heterogeneity of a chikungunya outbreak. Acta Tropica. 2014. January;129:61–73. Available from: 10.1016/j.actatropica.2013.08.00410.1016/j.actatropica.2013.08.004PMC711734323958228Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, Huerre M, et al. Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS ONE. 2007. January;2(11):e1168 10.1371/journal.pone.000116810.1371/journal.pone.0001168PMC206495918000540