It is no longer necessary to demonstrate that ribosome is the central machinery of protein synthesis. But it is less known that it is also key player of the protein folding process through another conserved function: the protein folding activity of the ribosome (PFAR). This ribozyme activity, discovered more than 2 decades ago, depends upon the domain V of the large rRNA within the large subunit of the ribosome. Surprisingly, we discovered that anti-prion compounds are also potent PFAR inhibitors, highlighting an unexpected link between PFAR and prion propagation. In this review, we discuss the ancestral origin of PFAR in the light of the ancient RNA world hypothesis. We also consider how this ribosomal activity fits into the landscape of cellular protein chaperones involved in the appearance and propagation of prions and other amyloids in mammals. Finally, we examine how drugs targeting the protein folding activity of the ribosome could be active against mammalian prion and other protein aggregation-based diseases, making PFAR a promising therapeutic target for various human protein misfolding diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399909 | PMC |
http://dx.doi.org/10.1080/19336896.2017.1303587 | DOI Listing |
J Chem Theory Comput
December 2024
School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel Servet 1, 1206 Genève, Switzerland.
We introduce an enhanced sampling algorithm to obtain converged free energy landscapes of molecular rare events, even when the collective variable (CV) used for biasing is not optimal. Our approach samples a time-dependent target distribution by combining the on-the-fly probability enhanced sampling and its exploratory variant, OPES Explore. This promotes more transitions between the relevant metastable states and accelerates the convergence speed of the free energy estimate.
View Article and Find Full Text PDFMembranes (Basel)
November 2024
Department of Biochemistry, University of Illinois Urbana, Champaign, IL 61801, USA.
Protein-lipid interactions demonstrate important regulatory roles in the function of membrane proteins. Nevertheless, due to the semi-liquid nature and heterogeneity of biological membranes, and dissecting the details of such interactions at high resolutions continues to pose a major challenge to experimental biophysical techniques. Computational techniques such as molecular dynamics (MD) offer an alternative approach with both temporally and spatially high resolutions.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
Hyaluronidases have been a subject of great interest in medical and cosmeceutical applications. Previously, our group demonstrated that the venom glands of contain hyaluronidase enzymes (VesT2s), and heterologous expression of the corresponding gene () in systems results in inclusion bodies, necessitating functional folding using urea. Here, we report the successful heterologous expression of VesT2a in the expression system, with gene construction achieved using Golden.
View Article and Find Full Text PDFPNAS Nexus
January 2025
School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA.
Recombinant antibodies are a promising class of therapeutics to treat protein misfolding associated with neurodegenerative diseases, and several antibodies that inhibit aggregation are approved or in clinical trials to treat Alzheimer's disease. Here, we developed antibodies targeting the aggregation-prone β-propeller olfactomedin (OLF) domain of myocilin, variants of which comprise the strongest genetic link to glaucoma and cause early onset vision loss for several million individuals worldwide. Mutant myocilin aggregates intracellularly in the endoplasmic reticulum (ER).
View Article and Find Full Text PDFProtein Sci
January 2025
Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
Antibodies and antibody mimics are extensively used in the pharmaceutical industry, where stringent safety standards are required. Implementing heat sterilization during or after the manufacturing process could help prevent contamination by viruses and bacteria. However, conventional antibodies and antibody mimics are not suitable for heat sterilization because they irreversibly denature at high temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!