Higher-order nucleic acid structures called G-quadruplexes (G4s, G4 structures) can form in guanine-rich regions of both DNA and RNA and are highly thermally stable. There are >375,000 putative G4-forming sequences in the human genome, and they are enriched in promoter regions, untranslated regions (UTRs), and within the telomeric repeat. Due to the potential for these structures to affect cellular processes, such as replication and transcription, the cell has evolved enzymes to manage them. One such enzyme is G4 Resolvase 1 (G4R1), which was biochemically co-characterized by our laboratory and Nagamine et al. and found to bind extremely tightly to both G4-DNA and G4-RNA (Kd in the low-pM range). G4R1 is the source of the majority of G4-resolving activity in HeLa cell lysates and has since been implicated to play a role in telomere metabolism, lymph development, gene transcription, hematopoiesis, and immune surveillance. The ability to efficiently express and purify catalytically active G4R1 is of importance for laboratories interested in gaining further insight into the kinetic interaction of G4 structures and G4-resolving enzymes. Here, we describe a detailed method for the purification of recombinant G4R1 (rG4R1). The described procedure incorporates the traditional affinity-based purification of a C-terminal histidine-tagged enzyme expressed in human codon-optimized bacteria with the utilization of the ability of rG4R1 to bind and unwind G4-DNA to purify highly active enzyme in an ATP-dependent elution step. The protocol also includes a quality-control step where the enzymatic activity of rG4R1 is measured by examining the ability of the purified enzyme to unwind G4-DNA. A method is also described that allows for the quantification of purified rG4R1. Alternative adaptations of this protocol are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409278PMC
http://dx.doi.org/10.3791/55496DOI Listing

Publication Analysis

Top Keywords

unwind g4-dna
8
g-quadruplex dna-affinity
4
dna-affinity approach
4
approach purification
4
purification enzymatically
4
enzymatically active
4
active resolvase1
4
resolvase1 higher-order
4
higher-order nucleic
4
nucleic acid
4

Similar Publications

Metallo-supramolecular complexes enantioselectively target monkeypox virus RNA G-quadruplex and bolster immune responses against MPXV.

Natl Sci Rev

January 2025

Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

The Mpox virus (MPXV) has emerged as a formidable orthopoxvirus, posing an immense challenge to global public health. An understanding of the regulatory mechanisms of MPXV infection, replication and immune evasion will benefit the development of novel antiviral strategies. Despite the involvement of G-quadruplexes (G4s) in modulating the infection and replication processes of multiple viruses, their roles in the MPXV life cycle remain largely unknown.

View Article and Find Full Text PDF

Non-canonical nucleic acid structures possess an ability to interact selectively with proteins, thereby exerting influence over various intracellular processes. Numerous studies indicate that genomic G-quadruplexes and i-motifs are involved in the regulation of transcription. These structures are formed temporarily during the unwinding of the DNA double helix; and their direct determination is a rather difficult task.

View Article and Find Full Text PDF

DHX36 binding induces RNA structurome remodeling and regulates RNA abundance via mA reader YTHDF1.

Nat Commun

November 2024

Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.

RNA structure constitutes a new layer of gene regulatory mechanisms. RNA binding proteins can modulate RNA secondary structures, thus participating in post-transcriptional regulation. The DEAH-box helicase 36 (DHX36) is known to bind and unwind RNA G-quadruplex (rG4) structure but the transcriptome-wide RNA structure remodeling induced by DHX36 binding and the impact on RNA fate remain poorly understood.

View Article and Find Full Text PDF

Structure-based discovery of first inhibitors targeting the helicase activity of human PIF1.

Nucleic Acids Res

November 2024

Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Beech Hill Rd., Sheffield S10 2RX, United Kingdom.

PIF1 is a conserved helicase and G4 DNA binding and unwinding enzyme, with roles in genome stability. Human PIF1 (hPIF1) is poorly understood, but its functions can become critical for tumour cell survival during oncogene-driven replication stress. Here we report the discovery, via an X-ray crystallographic fragment screen (XChem), of hPIF1 DNA binding and unwinding inhibitors.

View Article and Find Full Text PDF

Abnormal intracellular phase transitions in mutant hnRNP A1 may underlie the development of several neurodegenerative diseases. The risk of these diseases increases upon repeat expansion and the accumulation of the corresponding G-quadruplex (G4)-forming RNA, but the link between this RNA and the disruption of hnRNP A1 homeostasis has not been fully explored so far. Our aim was to clarify the mutual effects of hnRNP A1 and C9Orf72 G4 in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!