Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The transmission of multiple independent optical signals through a multimode fiber is accomplished using wavefront shaping in order to compensate for the light distortion during the propagation within the fiber. Our methodology is based on digital optical phase conjugation employing only a single spatial light modulator, where the optical wavefront is individually modulated at different regions of the modulator, one region per light signal. Digital optical phase conjugation approaches are considered to be faster than other wavefront shaping approaches, where (for example) a complete determination of the wave propagation behavior of the fiber is performed. In contrast, the presented approach is time-efficient since it only requires one calibration per light signal. The proposed method is potentially appropriate for spatial division multiplexing in communications engineering. Further application fields are endoscopic light delivery in biophotonics, especially in optogenetics, where single cells in biological tissue have to be selectively illuminated with high spatial and temporal resolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408979 | PMC |
http://dx.doi.org/10.3791/55407 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!