Cocrystal assembled by 1,4-diiodotetrafluorobenzene and phenothiazine based on C-I...π/N/S halogen bond and other assisting interactions.

Acta Crystallogr B Struct Sci Cryst Eng Mater

College of Chemistry, Beijing Normal University, Beijing, Beijing 100875, People's Republic of China.

Published: April 2017

AI Article Synopsis

  • The study successfully created a cocrystal from 1,4-diiodotetrafluorobenzene (1,4-DITFB) and phenothiazine (PHT) using a solution-based method.
  • X-ray diffraction analysis showed that the cocrystal has a 3:2 ratio of the two compounds, structured through various halogen bonds and other interactions.
  • The unique shape of PHT leads to weak phosphorescence and stronger delayed fluorescence, suggesting potential applications in designing luminescent materials using halogen bonds.

Article Abstract

The halogen-bonded cocrystal of 1,4-diiodotetrafluorobenzene (1,4-DITFB) with the butterfly-shape non-planar heterocyclic compound phenothiazine (PHT) was successfully assembled by the conventional solution-based method. X-ray single-crystal diffraction analysis reveals a 3:2 stoichiometric ratio for the cocrystal (1,4-DITFB/PHT), and the cocrystal structure is constructed via C-I...π, C-I...N and C-I...S halogen bonds as well as other assisting interactions (e.g. C-H...F/S hydrogen bond, C-H...H-C and C-F...F-C bonds). The small shift of the 1,4-DITFB vibrational band to lower frequencies in FT-IR and Raman spectroscopies provide evidence to confirm the existence of the halogen bond. In addition, the non-planarity of the PHT molecule in the cocrystal results in PHT emitting weak phosphorescence and relatively strong delayed fluorescence. Thus, a wide range of delayed fluorescence and weak phosphorescence could play a significant role in selecting a proper π-conjugated system to engineer functional cocrystal and luminescent materials by halogen bonds.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2052520617002918DOI Listing

Publication Analysis

Top Keywords

halogen bond
8
assisting interactions
8
halogen bonds
8
weak phosphorescence
8
delayed fluorescence
8
cocrystal
6
cocrystal assembled
4
assembled 14-diiodotetrafluorobenzene
4
14-diiodotetrafluorobenzene phenothiazine
4
phenothiazine based
4

Similar Publications

Comparison of blending and bonding of phytic acid arginine salt and cellulose nanofibers on their synergistic flame-retardant effect in poly (butylene succinate).

Int J Biol Macromol

January 2025

School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; China Advanced Flame Retardant Engineering Technology Research Center for Light Industry, Beijing 100048, China; Engineering laboratory for halogen-free flame retardants for polymer materials in the petroleum and chemical industry, Beijing 100048, China.

In this study, cellulose nanofibers (CNFs) were utilized as a synergistic agent, and combined with phytic acid arginine salt (PaArg) via blending and bonding. The effects of these different binding techniques of CNFs and PaArg on the flame retardant and mechanical properties of poly (butylene succinate) (PBS) were explored. The results indicated that both blended and bonded CNFs and PaArg enabled PBS composites to achieve a UL 94 V-0 rating, with the limiting oxygen index (LOI) value of the composite exceeding 28 %.

View Article and Find Full Text PDF

End-Point Affinity Estimation of Galectin Ligands by Classical and Semiempirical Quantum Mechanical Potentials.

J Chem Inf Model

January 2025

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Gilead Sciences & IOCB Research Centre, Flemingovo nám. 2, 166 10 Prague, Czech Republic.

The use of quantum mechanical potentials in protein-ligand affinity prediction is becoming increasingly feasible with growing computational power. To move forward, validation of such potentials on real-world challenges is necessary. To this end, we have collated an extensive set of over a thousand galectin inhibitors with known affinities and docked them into galectin-3.

View Article and Find Full Text PDF

Pt/IrO enables selective electrochemical C-H chlorination at high current.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore.

Employing electrochemistry for the selective functionalization of liquid alkanes allows for sustainable and efficient production of high-value chemicals. However, the large potentials required for C(sp)-H bond functionalization and low water solubility of such alkanes make it challenging. Here we discover that a Pt/IrO electrocatalyst with optimized Cl binding energy enables selective generation of Cl free radicals for C-H chlorination of alkanes.

View Article and Find Full Text PDF

The [CH3OH-CH2X2] (X = Cl, Br, and I) complexes have been studied to understand the tendency towards the formation of hydrogen bonds and halogen bonds. Three different types of interactions viz., C-X· · ·O, C-H· · ·O, and O-H· · ·X, are possible between the CH3OH and CH2X2.

View Article and Find Full Text PDF

Chemoenzymatic C,C-Bond Forming Cascades by Cryptic Vanadium Haloperoxidase Catalyzed Bromination.

Org Lett

December 2024

Biomimetic Catalysis, Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany.

Inspired by natural cryptic halogenation in -bond formation, this study developed a synthetic approach combining biocatalytic bromination with transition-metal-catalyzed cross-coupling. Using the cyanobacterial VHPO, a robust and sustainable bromination-arylation cascade was created. Genetic modifications allowed enzyme immobilization, enhancing the compatibility between biocatalysis and chemocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!