Theoretical insights into the π-hole interactions in the complexes containing triphosphorus hydride (PH) and its derivatives.

Acta Crystallogr B Struct Sci Cryst Eng Mater

College of Chemistry and Material Sciences, Key Laboratory of Inorganic Nano-materials of Hebei Province, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China.

Published: April 2017

The π-hole of triphosphorus hydride (PH) and its derivatives ZX (Z = P, As; X = H, F, Cl, Br) was discovered and analyzed. MP2/aug-cc-pVDZ calculations were performed on the π-hole interactions in the HCN...ZX complexes and the mutual influence between π-hole interactions and the hydrogen bond in the HCN...HCN...ZX and HCN...ZX...HCN complexes studied. The π-hole interaction belongs to the typical closed-shell noncovalent interaction. The linear relationship was found between the most positive electrostatic potential of the π-hole (V) and the interaction energy. Moreover, the V of the π-hole was also found to be linearly correlated to the electrostatic energy term, indicating the important contribution of the electrostatic energy term to the π-hole interaction. There is positive cooperativity between the π-hole interaction and the hydrogen bond in the termolecular complexes. The π-hole interaction has a greater influence on the hydrogen bond than vice versa. The mutual enhancing effect between the π-hole interaction and the hydrogen bond in the HCN...HCN...ZX complexes is greater than that in the HCN...ZX...HCN complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2052520616019223DOI Listing

Publication Analysis

Top Keywords

π-hole interaction
24
hydrogen bond
16
π-hole interactions
12
π-hole
11
triphosphorus hydride
8
hydride derivatives
8
bond hcnhcnzx
8
hcnzxhcn complexes
8
electrostatic energy
8
energy term
8

Similar Publications

The release of synaptic vesicles (SVs) at the synaptic junction is a complex process involving various specialized proteins that work in unison. Among these, Bassoon has emerged as a significant protein, particularly noted for its association with various neurological and aging-related diseases. Due to its structural and functional roles, Bassoon has become a focus of recent research, especially in understanding its implications in neurodegenerative and psychiatric disorders.

View Article and Find Full Text PDF

The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.

View Article and Find Full Text PDF

Developing vapor-solid reaction methods to prepare organic-inorganic hybrid perovskite thin films is highly compatible with processes in crystalline silicon solar cells and the thin-film photovoltaic industries, facilitating rapid industrialization. In the vapor-solid reaction, the crystallization quality of perovskite thin films is widely influenced by the crystallinity and microstructure of lead iodide (PbI) precursor films. During the thermal evaporation process of preparing the PbI precursor films, we observed that PbI tends to develop a disordered surface morphology and exhibits high crystallinity, which significantly hinders the uniform diffusion of the organic amine salt vapor during the subsequent vapor-solid reaction.

View Article and Find Full Text PDF

Incompatible electrode/electrolyte interface often leads to dendrite growth, parasitic reactions and corrosion, posing significant challenges to the application of Zn anodes. Herein, we introduce a biomimetic antifreeze protein localized gel electrolyte (ALGE) with multifunctional capabilities to address these issues by combining electrolyte modification with interface optimization. ALGE modifies the Zn2+ solvation structure and the hydrogen-bond network adjacent to zinc anode, effectively suppressing hydrogen evolution.

View Article and Find Full Text PDF

Insight into the Specific Adsorption of Cu(II) by a Zinc-Based Metal-Organic Framework Mediated via a Proton-Exchange Mechanism.

Langmuir

March 2025

China Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

In the context of scarce metal resources, the one-step separation and recovery of high-value copper metal ions from secondary resources is of significant importance and presents substantial challenges. This study identified a Zn-based triazole MOF (Zn(tr)(OAc)) with accessible and noncoordinated terminal hydroxyl groups within its framework. The Zn(tr)(OAc) surpasses most currently reported Cu-specific MOF adsorbents regarding adsorption capacity and Cu selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!