A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Shock-Resistibility of MEMS-Based Inertial Microswitch under Reverse Directional Ultra-High g Acceleration for IoT Applications. | LitMetric

This paper presents a novel MEMS-based inertial microswitch design with multi-directional compact constraint structures for improving the shock-resistibility. Its shock-resistibility in the reverse-sensitive direction to ultra-high g acceleration (~hunderds of thousands) is simulated and analyzed. The dynamic response process indicates that in the designed inertial microswitch the proof mass weight G, the whole system's stiffness k and the gap x between the proof mass and reverse constraint blocks have significant effect on the shock-resistibility. The MEMS inertial microswitch micro-fabricated by surface micromachining has been evaluated using the drop hammer test. The maximum allowable reverse acceleration, which does not cause the spurious trigger, is defined as the reverse acceleration threshold (a). Test results show that a increases with the decrease of the gap x, and the proposed microswitch tends to have a better shock-resistibility under smaller gap. The measured responses of the microswitches with and without constraint structure indicates that the device without constraint structure is prone to spurious trigger, while the designed constraint structures can effectively improve the shock-resistibility. In this paper, the method for improving the shock-resistibility and reducing the spurious trigger has been discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5374543PMC
http://dx.doi.org/10.1038/srep45512DOI Listing

Publication Analysis

Top Keywords

inertial microswitch
16
spurious trigger
12
mems-based inertial
8
ultra-high acceleration
8
constraint structures
8
improving shock-resistibility
8
proof mass
8
reverse acceleration
8
constraint structure
8
shock-resistibility
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!