[NMR spectrometry in vivo with a resistive magnet at 1,2 T].

C R Acad Sci III

Laboratoire RMN, Hôpital de Chamonix.

Published: June 1988

A resistive magnet, operating at 1.2 T, intended to magnetic resonance spectroscopy in man was set up and evaluated in the hospital of Chamonix. Drusch S.A. in collaboration with Institut d' Electronique fondamentale built the system with the following characteristics: weight: 12 t, pole diameter: 55 cm, distance between coils: 36 cm. Cooling the magnet was provided by water flowing at 50 l/min. The magnetic field homogeneity was 3 X 10(-7) in a 60 mm diameter sphere. Stability was regulated at +/- 1 mGs. Five correcting circuits were used (X, Y, Z, Z2, XY). For experiments in man useful window was 120 X 20 cm and allowed measurements in brain and limbs. With this type of magnet, 1H, 31P and 23Na NMR spectra equalled in quality those obtained with superconducting magnets which work at a very higher cost.

Download full-text PDF

Source

Publication Analysis

Top Keywords

resistive magnet
8
[nmr spectrometry
4
spectrometry vivo
4
vivo resistive
4
magnet
4
magnet resistive
4
magnet operating
4
operating intended
4
intended magnetic
4
magnetic resonance
4

Similar Publications

Hyperpolarized Xe MRI/MRS enables quantitative mapping of function in lung airspaces, membrane tissue, and red blood cells (RBCs) within the pulmonary capillaries. The RBC signal also exhibits cardiogenic oscillations that are reduced in pre-capillary pulmonary hypertension (PH). This effect is obscured in patients with concomitant defects in transfer from airspaces to RBCs, which increase RBC oscillation amplitudes.

View Article and Find Full Text PDF

Efficient magnetization control is a central issue in magnetism and spintronics. Particularly, there are increasing demands for manipulation of magnetic states in van der Waals (vdW) magnets with unconventional functionalities. However, the electrically induced phase transition between ferromagnetic-to-antiferromagnetic states without external magnetic field is yet to be demonstrated.

View Article and Find Full Text PDF

DFT study of the binary intermetallic compound NdMn in different polytypic phases.

J Mol Model

January 2025

Department of Physics, University of Malakand, Chakdara, Dir (Lower), 18800, KP, Pakistan.

Context: The structural stability, ground state magnetic order, electronic, elastic and thermoelectric properties of NdMn in the C15, C14 and C36 polytypic phases is investigated. The magnetic phase optimization and magnetic susceptibility reveal that NdMn is antiferromagnetic (AFM) in C36 phase; and paramagnetic (PM) in C14 and C15 phases respectively. The band profiles and electrical resistivity show the metallic nature in all these polytypic phases and reveal that the C36 phase possesses smaller resistivity.

View Article and Find Full Text PDF

A two-degree-of-freedom bistable energy harvester with a spring-magnet oscillator designed for ultra-low frequency vibration energy harvesting is presented in this paper. It combines magnetic plucking frequency upconversion and a variable potential function to achieve a high-efficiency response while also being suitably installed for applications with spatial limitations. A lumped parameter model of the piezoelectric energy harvester and the magnetic dipoles is applied to develop the theoretical model for the system.

View Article and Find Full Text PDF

The construction of multilevel magnetic states using materials with perpendicular magnetic anisotropy (PMA) offers a novel approach to enhancing the storage density and read/write efficiency of nonvolatile magnetic memory devices. In this study, optically readable multilevel magnetic domain states are achieved by inducing asymmetric interlayer interactions and decoupling the magnetic reversal behavior of individual ferromagnetic (FM) layers in exchange-biased FM multilayers with PMA. Hepta-level magnetic domain states are formed in [Co/Pt] FM multilayers grown on an antiferromagnetic FeO layer within a relatively low magnetic field range of ∼±400 Oe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!