VEGF-A Regulates Cellular Localization of SR-BI as Well as Transendothelial Transport of HDL but Not LDL.

Arterioscler Thromb Vasc Biol

From the Institute of Clinical Chemistry, University and University Hospital of Zurich, Schlieren, Switzerland (S.V., M.Y., A.P., D.P., P.Z., L.R., A.v.E.); Competence Center for Integrated Human Physiology, University of Zurich, Switzerland (S.V., M.Y., D.P., P.Z., L.R., A.v.E.); Department of Pharmacy, University of Parma, Italy (A.P.); and Scientific Center for Optical and Electron Microscopy, ETH Zurich, Switzerland (R.M., S.F.N., A.R., M.S., S.S.).

Published: May 2017

Objective: Low- and high-density lipoproteins (LDL and HDL) must pass the endothelial layer to exert pro- and antiatherogenic activities, respectively, within the vascular wall. However, the rate-limiting factors that mediate transendothelial transport of lipoproteins are yet little known. Therefore, we performed a high-throughput screen with kinase drug inhibitors to identify modulators of transendothelial LDL and HDL transport.

Approach And Results: Microscopy-based high-content screening was performed by incubating human aortic endothelial cells with 141 kinase-inhibiting drugs and fluorescent-labeled LDL or HDL. Inhibitors of vascular endothelial growth factor (VEGF) receptors (VEGFR) significantly decreased the uptake of HDL but not LDL. Silencing of VEGF receptor 2 significantly decreased cellular binding, association, and transendothelial transport of I-HDL but not I-LDL. RNA interference with VEGF receptor 1 or VEGF receptor 3 had no effect. Binding, uptake, and transport of HDL but not LDL were strongly reduced in the absence of VEGF-A from the cell culture medium and were restored by the addition of VEGF-A. The restoring effect of VEGF-A on endothelial binding, uptake, and transport of HDL was abrogated by pharmacological inhibition of phosphatidyl-inositol 3 kinase/protein kinase B or p38 mitogen-activated protein kinase, as well as silencing of scavenger receptor BI. Moreover, the presence of VEGF-A was found to be a prerequisite for the localization of scavenger receptor BI in the plasma membrane of endothelial cells.

Conclusions: The identification of VEGF as a regulatory factor of transendothelial transport of HDL but not LDL supports the concept that the endothelium is a specific and, hence, druggable barrier for the entry of lipoproteins into the vascular wall.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.117.309284DOI Listing

Publication Analysis

Top Keywords

transendothelial transport
16
transport hdl
16
hdl ldl
16
ldl hdl
12
vegf receptor
12
hdl
8
vascular wall
8
binding uptake
8
uptake transport
8
scavenger receptor
8

Similar Publications

Competitive displacement of lipoprotein lipase from heparan sulfate is orchestrated by a disordered acidic cluster in GPIHBP1.

J Lipid Res

January 2025

Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.

View Article and Find Full Text PDF

Purpose: Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects.

View Article and Find Full Text PDF

Introduction: Melanotransferrin (CD228), a cell membrane-anchored protein, has emerged as a significant cancer antigen due to its high expression in various solid tumors. This review synthesizes the current understanding and therapeutic potential of CD228.

Areas Covered: We conducted a literature search using PubMed, Web of Science, and ClinicalTrials.

View Article and Find Full Text PDF
Article Synopsis
  • Ultrasound combined with microbubble technology effectively opens the blood-brain barrier, allowing targeted drug delivery, but the underlying mechanisms, particularly regarding calcium signaling, need further exploration.
  • Research showed that microbubbles create strong calcium responses and cell poration, while integrin-targeted microbeads lead to temporary calcium changes without damaging the cell membrane, highlighting different bioeffects in brain endothelial cells.
  • The study also found that both microbubbles and microbeads enhance the permeability of endothelial cells for larger molecules, indicating potential improvements in drug delivery methods through better understanding of calcium signaling and cell junction dynamics.
View Article and Find Full Text PDF

Knockdown of VEGF-B improves HFD-induced insulin resistance by enhancing glucose uptake in vascular endothelial cells via the PI3K/Akt pathway.

Int J Biol Macromol

January 2025

Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Wens Foodstuff Group Co., Ltd., Yunfu 527400, China. Electronic address:

Vascular endothelial growth factor B (VEGF-B) has been suggested to play a crucial role in regulating whole-body glucose homeostasis. However, the involved mechanisms are not fully understood. This study aimed to elucidate the regulatory effects and mechanisms of VEGF-B on glucose uptake in skeletal muscle, focusing on glucose uptake by skeletal muscle cells and vascular endothelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!