The wide use of the herbicide diuron has compromised surrounding uncultivated areas, resulting in acute and/or chronic damage to non-target plants. Thus, the aim of this research was to evaluate physiological and morphoanatomical responses in Bauhinia variegata L. plants to different doses of diuron. Seedlings of 90-day-old B. variegata were transplanted into 10liter pots. After an acclimation period (about 30 days), treatments consisting of different diuron doses were applied: 0 (control), 400, 800, 1600, and 2400g ai ha. The experiment was conducted in a randomized block design in a 5×5 factorial scheme with five doses of diuron five evaluation times, and five replicates per treatment. Anatomical and physiological injuries were observed in leaves of Bauhina variegata 10h after diuron application. Disruption of waxes was observed on both sides of the leaves of plants exposed since the lowest dose. Plasmolysis in cells were observed in treated leaves; more severe damage was observed in plants exposed to higher doses, resulting in rupture of epidermis. The diuron herbicide also caused gradual reduction in the gas exchange and chlorophyll fluorescence variables. Among the morphoanatomical and physiological variables analyzed, the non-invasive ones (e.g., ETR, Y, and F/F) may be used as biomarkers of diuron action in association with visible symptoms. In addition, changes in leaf blade waxes and chlorophyll parenchyma damage may also be considered additional leaf biomarkers of diuron herbicide action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2017.03.038 | DOI Listing |
Integr Environ Assess Manag
January 2025
Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Maroussi, Greece.
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and herbicides are important persistent contaminants that require specific management. A variety of herbicides is stored in fluorinated containers in the form of aquatic solutions. In such environments, the simultaneous release of PFAS and herbicides takes place.
View Article and Find Full Text PDFWater Res
January 2025
Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States. Electronic address:
N-Nitrosamines, many of which are carcinogenic, mutagenic, and teratogenic, are disinfection byproducts (DBPs) formed from the reaction of chloramine with nitrogenous organic compounds during water disinfection. The identification of major nitrosamine precursors is important to understand and prevent nitrosamine formation. In this analysis, we propose that efforts to identify nitrosamine precursors must look beyond conventionally evaluated active agent chemicals to consider inert or inactive chemicals as potentially relevant precursors.
View Article and Find Full Text PDFNanotechnology
January 2025
Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, Uppsala, SE-751 20, SWEDEN.
The growing world population and climate change are key drivers for the increasing pursuit of more efficient and environmentally-safe food production. In this scenario, the large scale use of herbicides demands the development new technologies to control and monitor the application of these compounds, due to their several environmental and health-related problems. Motivated by all these issues, in this work, a hybrid graphene/boron nitride nanopore is explore to detect/identify herbicide molecules (Glyphosate, AMPA, Diuron, and 2,4-D).
View Article and Find Full Text PDFInt J Phytoremediation
December 2024
Department of Ecology, Jinan University, Guangzhou, China.
Vegetated ditches have been demonstrated to be an effective method for pollutant remediation. This study assesses the removal potential and pathways for herbicide runoff pollution utilizing , , , and ditches. Resultes show these vegetated ditches significantly outperform unvegetated ones in removing atrazine and diuron during runoff events ( < 0.
View Article and Find Full Text PDFWater Res
December 2024
Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil; Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Rio Grande, RS 96203-900, Brazil. Electronic address:
Organotin compounds (OTs) used to be the most widely used biocide in antifouling paint systems, but the International Maritime Organization (IMO) banned them because of their high environmental toxicity to non-target organisms. Currently, at least 25 active ingredients are being employed as biocides in antifouling paint formulations. In the present study, silicone rubber-based passive sampling was used to determine the freely dissolved concentrations (C) of 6 OTs and 4 booster biocides in the water column at the entrance of Santos Port's main navigation channel, the largest Port of South America (southeastern Brazil).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!