Structure and components of the globular and filamentous viroplasms induced by Rice black-streaked dwarf virus.

Micron

State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address:

Published: July 2017

Viroplasms of members of the family Reoviridae are considered to be viral factories for genome replication and virion assembly. Globular and filamentous phenotypes have different components and probably have different functions. We used transmission electron microscopy and electron tomography to examine the structure and components of the two viroplasm phenotypes induced by Rice black-streaked dwarf virus (RBSDV). Immuno-gold labeling was used to localize each of the 13 RBSDV encoded proteins as well as double-stranded RNA, host cytoskeleton actin-11 and α-tubulin. Ten of the RBSDV proteins were localized in one or both types of viroplasm. P5-1, P6 and P9-1 were localized on both viroplasm phenotypes but P5-1 was preferentially associated with filaments and P9-1 with the matrix. Structural analysis by electron tomography showed that osmiophilic granules 6-8nm in diameter served as the fundamental unit for constructing both of the viroplasm phenotypes but were more densely packed in the filamentous phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2017.03.002DOI Listing

Publication Analysis

Top Keywords

viroplasm phenotypes
12
structure components
8
globular filamentous
8
induced rice
8
rice black-streaked
8
black-streaked dwarf
8
dwarf virus
8
electron tomography
8
components globular
4
filamentous viroplasms
4

Similar Publications

Transcriptional activity of RNA polymerase II (Pol II) is influenced by post-translational modifications of the C-terminal domain (CTD) of the largest Pol II subunit, RPB1. Herpes simplex virus type 1 (HSV-1) usurps the cellular transcriptional machinery during lytic infection to efficiently express viral mRNA and shut down host gene expression. The viral immediate-early protein ICP22 interferes with serine 2 phosphorylation (pS2) by targeting CDK9 and other CDKs, but the full functional implications of this are not well understood.

View Article and Find Full Text PDF
Article Synopsis
  • * A pilot study involved two pigtail macaques infected with SIV (a simian version of HIV), which were exposed to SARS-CoV-2 and monitored to observe clinical disease and viral behavior over six weeks, compared to non-SIV-infected macaques.
  • * Despite lacking robust immune responses, the SIV-infected macaques showed similar patterns of viral replication and clearance as non-infected macaques, suggesting that their immunodeficiency didn't affect the progression or evolution of SARS-CoV-2. *
View Article and Find Full Text PDF

Herpesviruses are large double-stranded DNA viruses that encode core replication proteins and accessory factors involved in nucleotide metabolism and DNA repair. Mammalian uracil-DNA glycosylases (UNG) excise deleterious uracil residues from their genomic DNA. Each herpesvirus UNG studied to date has demonstrated conservation of the enzymatic function to excise uracil residues from DNA.

View Article and Find Full Text PDF

Enterovirus D68 (EV-D68), a picornavirus traditionally associated with respiratory infections, has recently been linked to a polio-like paralytic condition known as acute flaccid myelitis (AFM). EV-D68 is understudied, and much of the field's understanding of this virus is based on studies of poliovirus. For poliovirus, we previously showed that low pH promotes virus capsid maturation, but here we show that, for EV-D68, inhibition of compartment acidification during a specific window of infection causes a defect in capsid formation and maintenance.

View Article and Find Full Text PDF

Unlabelled: Herpesviruses are large double-stranded DNA viruses that encode core replication proteins and accessory factors involved in nucleotide metabolism and DNA repair. Mammalian Uracil-DNA glycosylases (UNG) excise deleterious uracil residues from their genomic DNA. Each herpesvirus UNG studied to date has demonstrated conservation of the enzymatic function to excise uracil residues from DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!