The trigeminal ganglia (TG) subserving the head and the dorsal root ganglia (DRG) subserving the rest of the body are homologous handling sensory neurons. Differences exist, as a number of signaling substances cause headache but no pain in the rest of the body. To date, very few genes involved in this difference have been identified. We aim to reveal basal gene expression levels in TG and DRG and detect genes that are differentially expressed (DE) between TG and DRG. RNA-Sequencing from six naïve rats describes the whole transcriptome expression profiles of TG and DRG. Differential expression analysis was followed by pathway analysis to identify DE processes between TG and DRG. In total, 64 genes had higher and 55 genes had lower expressed levels in TG than DRG. Higher expressed genes, including S1pr5 and Gjc2, have been related to phospholipase activity. The lower expressed genes, including several Hox genes and Slc5a7, have been related to tyrosine and phenylalanine metabolism. Tissue-specific expression was identified for Gabra6 and Gabrd in TG, and for several Hox genes in DRG. Furthermore, genes that were known to be associated with headache/migraine were mostly moderately to highly expressed in one or both tissues. We present a comprehensive overview of the expression profiles of whole tissue comparison of TG and DRG. Further, we showed DE genes/pathways between TG and DRG, including several known migraine-associated genes. This study provides a basis for further pain-related studies using TG and DRG in rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2017.03.027 | DOI Listing |
J Clin Neurosci
January 2025
Departments of Anesthesiology and Neurological Surgery, Harborview Medical Center, University of Washington, 325 9th Ave, Seattle, WA, 98104, USA.
Background: Early left ventricular systolic dysfunction is common after moderate-severe traumatic brain injury (TBI). Echocardiography (Echo) can evaluate cardiac function across various clinical scenarios; however, its utilization in isolated TBI remains poorly understood. To address this gap, we aim to examine Echo utilization in hospitalized adults with isolated TBI.
View Article and Find Full Text PDFCurr Gene Ther
January 2025
Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China.
Background: Plasmalogens, the primary phospholipids in the brain, possess intrinsic antioxidant properties and are crucial components of the myelin sheath surrounding neuronal axons. While their neuroprotective effects have been demonstrated in Alzheimer's disease, their potential benefits in spinal cord injury remain unexplored. This study investigates the reparative effects of plasmalogens on spinal cord injury and the underlying mechanisms.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Center for Basic Medical Research, Medical School of Nantong University, Nantong 226001, P. R. China.
Chronic pain is a debilitating disease and remains challenging to treat. Morphine serves as the most commonly used drug for the treatment of pathological pain. However, detrimental side effects (e.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia.
Organic fluorescence and colorimetric probes have emerged as vital tools for detecting metal ions, due to their high sensitivity, selectivity, and rapid response times. Copper, an essential trace element, plays a critical role in biological systems, yet its imbalance can lead to severe disorders such as neurodegenerative diseases, cancer, and Wilson's disease. Over the past few years, advancements in probe design have unlocked innovative avenues for not only detecting Cu in environmental and biological samples but also for visualizing its distribution through fluorescence imaging.
View Article and Find Full Text PDFUrologie
January 2025
Klinik für Urologie, Philipps-Universität Marburg, Baldingerstraße, 35043, Marburg, Deutschland.
Background: The introduction of hybrid DRGs on 1 January 2024 is intended to create incentives to perform inpatient urology services, e.g., ureterorenoscopy (URS), on an outpatient basis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!