Achilles tendinopathy or rupture and anterior cruciate ligament (ACL) rupture are substantial injuries affecting athletes, associated with delayed recovery or inability to return to competition. To identify genetic markers that might be used to predict risk for these injuries, we performed genome-wide association screens for these injuries using data from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort consisting of 102,979 individuals. We did not find any single nucleotide polymorphisms (SNPs) associated with either of these injuries with a p-value that was genome-wide significant (p<5x10-8). We found, however, four and three polymorphisms with p-values that were borderline significant (p<10-6) for Achilles tendon injury and ACL rupture, respectively. We then tested SNPs previously reported to be associated with either Achilles tendon injury or ACL rupture. None showed an association in our cohort with a false discovery rate of less than 5%. We obtained, however, moderate to weak evidence for replication in one case; specifically, rs4919510 in MIR608 had a p-value of 5.1x10-3 for association with Achilles tendon injury, corresponding to a 7% chance of false replication. Finally, we tested 2855 SNPs in 90 candidate genes for musculoskeletal injury, but did not find any that showed a significant association below a false discovery rate of 5%. We provide data containing summary statistics for the entire genome, which will be useful for future genetic studies on these injuries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5373512PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170422PLOS

Publication Analysis

Top Keywords

genome-wide association
8
association screens
8
screens achilles
4
achilles tendon
4
tendon acl
4
acl tears
4
tears tendinopathy
4
tendinopathy achilles
4
achilles tendinopathy
4
tendinopathy rupture
4

Similar Publications

A genome-wide atlas of human cell morphology.

Nat Methods

January 2025

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.

View Article and Find Full Text PDF

With the rapid advancement of proteomics, numerous scholars have investigated the intricate relationships between plasma proteins and various diseases. Therefore, this study aims to elucidate the relationship between BDH1 and type 2 diabetes using Mendelian randomization (MR) and to identify novel targets for the prevention and treatment of type 2 diabetes through proteomics. This study primarily employed the Mendelian Randomization (MR) method, leveraging genetic data from numerous large-scale, publicly accessible genome-wide association studies (GWAS).

View Article and Find Full Text PDF

The Tapetum Determinant 1 (TPD1) family proteins are known to play a crucial role in the regulation of reproduction in plants, including Cenchrus americanus (pearl millet). However, members of TPD1 family proteins have not been fully identified. The current study aims to identify and characterize the TPD1 family proteins in Cenchrus americanus (L.

View Article and Find Full Text PDF

5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are crucial epigenetic modifications in eukaryotic genomic DNA that regulate gene expression and are associated with the occurrence of various cancers. Here, we combined bisulfite conversion with 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperridinium tetrafluoroborate (ACTBF, TCI) oxidation to develop a label-free and sequence-independent isothermal amplification (BTIA) assay for a genome-wide 5mC and 5hmC analysis. The BTIA strategy can distinguish 5mC and 5hmC signatures from other bases with high sensitivity and good specificity, avoiding sophisticated chemical modifications and expensive protein labeling.

View Article and Find Full Text PDF

Objectives: This study aims to use Mendelian randomisation to identify the causal relationship between a spectrum of 41 inflammatory cytokines and the development of oropharyngeal cancer.

Methods: This study investigated genetic variants that have been associated with oral and oropharyngeal cancer using data from a large GWAS. Inflammatory cytokine data were obtained from 8293 asymptomatic individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!