Pharmacogenetics in the treatment of pre-eclampsia: current findings, challenges and perspectives.

Pharmacogenomics

Department of Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, Sao Paulo 18680-000, Brazil.

Published: April 2017

Pre-eclampsia (PE) is defined as pregnancy-induced hypertension and proteinuria, and is a major cause of maternal and perinatal morbidity and mortality. A large subgroup of pregnant women with PE is nonresponsive to antihypertensive drugs, including methyldopa, nifedipine and hydralazine. Pharmacogenomics may help to guide the individualized therapy for this nonresponsive subgroup. However, just a few pharmacogenetic studies examined the effects of genetic polymorphisms on response to antihypertensive drugs in PE, and the criteria of responsiveness used to define responsive or nonresponsive subgroups to antihypertensive therapy should be replicated by others. We review these gene-drugs interactions, novel approaches to pharmacogenomics research and potential novel drugs for PE therapy. Finally, we discuss the challenges and perspectives of pharmacogenetics in the treatment of PE.

Download full-text PDF

Source
http://dx.doi.org/10.2217/pgs-2016-0198DOI Listing

Publication Analysis

Top Keywords

pharmacogenetics treatment
8
challenges perspectives
8
antihypertensive drugs
8
treatment pre-eclampsia
4
pre-eclampsia current
4
current findings
4
findings challenges
4
perspectives pre-eclampsia
4
pre-eclampsia defined
4
defined pregnancy-induced
4

Similar Publications

Response to azathioprine treatment in autoimmune hepatitis is dependent on glutathione transferase genotypes.

Dig Liver Dis

January 2025

Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden. Electronic address:

Background: Azathioprine (AZA) is part of the standard treatment for autoimmune hepatitis (AIH). The first step in the complex bioconversion of AZA to active metabolites is mediated by glutathione transferases (GSTs).

Aims: Elucidate the association between GSTM1 and GSTT1 copy number variation (CNV), genetic variation in GSTA2, GSTP1, and inosine-triphosphate-pyrophosphatase, and the response to AZA in AIH.

View Article and Find Full Text PDF

CircKIAA0182 Enhances Lung Cancer Progression and Chemoresistance through Interaction with YBX1.

Cancer Lett

January 2025

Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China; Institute of Clinical Pharmacology, Central South University, Changsha 410078, P. R. China. Electronic address:

Lung cancer, particularly non-small cell lung cancer (NSCLC), remains a leading cause of cancer-related mortality. Resistance to platinum-based chemotherapy, such as cisplatin, significantly limits treatment efficacy. Circular RNAs (circRNAs) have emerged as key regulators of cancer progression and chemotherapy resistance due to their stable structure, which protects them from degradation.

View Article and Find Full Text PDF

Fluctuations in circulating cell-free mitochondrial and nuclear DNA copy numbers in blood plasma after anti-tuberculosis drug intake in patients with drug-susceptible tuberculosis.

Tuberculosis (Edinb)

January 2025

Latvian Biomedical Research and Study Centre, Ratsupites street 1, k-1, Riga, LV-1067, Latvia; Riga Stradiņš University, Pharmacogenetic and Precision Medicine Laboratory, Konsula street 21, Riga, LV-1007, Latvia. Electronic address:

Biomarker research characterising the effect of anti-tuberculosis (TB) chemotherapy on systemic body response is still limited. In this study, we aimed to investigate fluctuations in circulating cell-free mitochondrial DNA (ccf-mtDNA) and circulating cell-free nuclear DNA (ccf-nDNA) copy number (CN) in blood plasma of patients with drug-susceptible TB (DS-TB) and to decipher factors related to these fluctuations. The results showed considerable changes in ccf-mtDNA CN in plasma samples before drug intake and 2 and 6 h afterwards, with high inter patient variability at each time point.

View Article and Find Full Text PDF

Genetic polymorphism of the dihydropyrimidine dehydrogenase gene () is responsible for the variability found in the metabolism of fluoropyrimidines such as 5-fluorouracil (5-FU), capecitabine, or tegafur. The genotype is linked to variability in enzyme activity, 5-FU elimination, and toxicity. Approximately 10-40% of patients treated with fluoropyrimidines develop severe toxicity.

View Article and Find Full Text PDF

Background/objectives: Pharmacogenetics (PGx) aims to identify individuals more likely to suffer from adverse reactions or therapeutic failure in drug treatments. However, despite most of the evidence in this area being from European populations, some diseases have also been neglected, such as HIV infection, malaria, and tuberculosis. With this review, we aim to emphasize which pharmacogenetic tests are ready to be implemented in treating neglected diseases that have some evidence and call attention to what is missing for these three diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!