ortho-Aminomethylphenylboronic acid-based receptors with appended fluorophores are commonly used as molecular sensors for saccharides in aqueous media. The mechanism for fluorescence modulation in these sensors has been attributed to some form of photoinduced electron transfer (PET) quenching, which is diminished in the presence of saccharides. Using a well-known boronic acid-based saccharide sensor (3), this work reveals a new mechanism for fluorescence turn-on in these types of sensors. Compound 3 exhibits an excimer, and the associated ground-state aggregation is responsible for fluorescence modulation under certain conditions. When fructose was titrated into a solution of 3 in 2:1 water/methanol with NaCl, the fluorescence intensity increased. Yet, when the same titration was repeated in pure methanol, a solvent in which the sensor does not aggregate, no fluorescence response to fructose was observed. This reveals that the fluorescence increase is not fully associated with fructose binding, but instead disaggregation of the sensor in the presence of fructose. Further, an analogue of the sensor that does not contain a boronic acid (4) responded nearly identically to 3 in the presence of fructose, despite having no functional group with which to bind the saccharide. This further supports the claim that fluorescence modulation is not primarily a result of binding, but of disaggregation. Using an indicator displacement assay and isothermal titration calorimetry, it was confirmed that fructose does indeed bind to the sensor. Thus, our evidence reveals that while binding occurs with fructose in the aqueous solvent system used, it is not related to the majority of the fluorescence modulation. Instead, disaggregation dominates the signal turn-on, and is thus a mechanism that should be investigated in other ortho-aminomethylphenylboronic acid-based sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.7b01755 | DOI Listing |
Anal Sci
December 2024
NHC Key Laboratory for Engineering Control of Dust Hazard, National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China.
We synthesized a squaraine dye (F-0) to develop a method for detecting pyrophosphate (PPi) and alkaline phosphatase (ALP) by modulating the fluorescence of F-0. The fluorescence intensity of the F-0 system was quenched upon the addition of Cu ions; however, it was restored when PPi was introduced due to the formation of a complex between PPi and Cu. Since ALP can hydrolyze PPi, the fluorescence of the system was quenched again upon the addition of ALP.
View Article and Find Full Text PDFSmall
December 2024
Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
Autophagy is a key biological process that has proven extremely difficult to detect noninvasively. To address this, an autophagy detecting nanoparticle (ADN) was recently developed, consisting of an iron oxide nanoparticle decorated with cathepsin-cleavable arginine-rich peptides bound to the near-infrared fluorochrome Cy5.5.
View Article and Find Full Text PDFThis study delves into the role of lactic acid bacteria (LAB) surface proteins in cell adhesion and immunoregulation. Using fluorescence microscopy, we observed distinct adhesion patterns on various cell types. LAB surface proteins demonstrated concentration-dependent inhibition of Salmonella adhesion, with LAB69 exhibiting potent antagonistic effects.
View Article and Find Full Text PDFProtein Sci
January 2025
Departament de Química, Universitat Autònoma de Barcelona, Barcelona, Spain.
Cyclooxygenase-2 (COX-2) plays a crucial role in inflammation and has been implicated in cancer development. Understanding the behavior of COX-2 in different cellular contexts is essential for developing targeted therapeutic strategies. In this study, we investigate the fluorescence spectrum of a fluorogenic probe, NANQ-IMC6, when bound to the active site of human COX-2 in both its monomeric and homodimeric forms.
View Article and Find Full Text PDFJ Plant Res
December 2024
Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
Crassulacean acid metabolism (CAM), a specialized mode of photosynthetic carbon assimilation characterized by nocturnal fixation of atmospheric CO and vacuolar malic acid storage, is found in a wide variety of vascular plant species, mainly those inhabiting water-limited environments. Identifying and characterizing diverse CAM species enhances our understanding of the physiological, ecological, and evolutionary significance of CAM photosynthesis. In this study, we examined the effect of CO elimination on chlorophyll fluorescence-based photosynthetic parameters in two constitutive CAM Kalanchoe species and six orchids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!