Biochemical mechanisms of tumor invasion and metastases.

Prog Clin Biol Res

Laboratory of Pathology, NCI, Bethesda, MD 20892.

Published: June 1988

Cancer invasion and metastases is a complex multistep process. In order for a tumor cell to successfully traverse all the steps of this process and initiate a metastatic colony, it must express the right combination of gene products. Such gene products may include proteins which regulate cell interaction with the basement membrane and cell motility. Tumor cells attach to the basement membrane glycoprotein laminin via the cell surface laminin receptor. The human laminin receptor was purified and molecularly cloned. The level of laminin receptor mRNA is a variety of human carcinoma cells correlated with the number of laminin receptors on the cell surface of these cells. Following attachment to the basement membrane, the tumor cell next secretes proteases which may degrade type IV collagen. A genetic linkage between type IV collagenase secretion and metastases was studied using our new genetic system for inducing metastases employing the ras oncogene. Following attachment and local proteolysis, the third step of invasion is tumor cell motility. We have isolated a tumor cell autocrine motility factor (AMF). This factor is secreted by the tumor cells and binds to a cell surface receptor resulting in a profound (greater than 100x) stimulation of cell locomotion. AMF may play a major role in the autonomous invasive behavior of tumor cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

tumor cell
16
basement membrane
12
tumor cells
12
cell surface
12
laminin receptor
12
cell
10
tumor
8
invasion metastases
8
gene products
8
cell motility
8

Similar Publications

Pediatric neuro-oncology patients have one of the highest mortality rates among all children with cancer. Our study examines the potential relationship between palliative care consultation and intensity of in-hospital care and determines if racial and ethnic differences are associated with palliative care consultations during their terminal admission. Retrospective observational study using the Pediatric Health Information System (PHIS) database with data from U.

View Article and Find Full Text PDF

Short-term starvation boosts anti-PD-L1 therapy by reshaping tumor-associated macrophages in hepatocellular carcinoma.

Hepatology

January 2025

Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.

Background And Aims: Immune checkpoint inhibitors (ICIs) have revolutionized systemic hepatocellular carcinoma (HCC) treatment. Nevertheless, numerous patients are refractory to ICIs therapy. It is currently unknown whether diet therapies such as short-term starvation (STS) combined with ICIs can be used to treat HCC.

View Article and Find Full Text PDF

Background: Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma.

View Article and Find Full Text PDF

Dual Pathways of Photorelease Carbon Monoxide via Photosensitization for Tumor Treatment.

J Am Chem Soc

January 2025

State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.

Carbon monoxide (CO) gas therapy, as an emerging therapeutic strategy, is promising in tumor treatment. However, the development of a red or near-infrared light-driven efficient CO release strategy is still challenging due to the limited physicochemical characteristics of the photoactivated carbon monoxide-releasing molecules (photoCORMs). Here, we discovered a novel photorelease CO mechanism that involved dual pathways of CO release via photosensitization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!